Your conditions: Zengxiu Zhao
  • Multiband dynamics of extended harmonic generation in solids under ultraviolet injection

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Using one-dimensional semiconductor Bloch equations, we investigate the multiband dynamics of electrons in a cutoff extension scheme employing an infrared pulse with additional UV injection. An extended three-step model is firstly validated to play a dominant role in emitting harmonics in the second plateau. Surprisingly, further analysis employing the acceleration theorem shows that though harmonics in both the primary and secondary present positive and negative chirps, the positive (negative) chirp in the first region is related to the so-called short (long) trajectory, while that in the second region is emitted through `general' trajectory, where electrons tunnelling earlier and recombining earlier contribute significantly. The novel characteristics deepen the understanding of high harmonic generation in solids and may have great significance in attosecond science and reconstruction of band dispersion beyond the band edge.

  • Photon retention in coherently excited nitrogen ions

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Quantum coherence in quantum optics is an essential part of optical information processing and light manipulation. Alkali metal vapors, despite the numerous shortcomings, are traditionally used in quantum optics as a working medium due to convenient near-infrared excitation, strong dipole transitions and long-lived coherence. Here, we proposed and experimentally demonstrated photon retention and subsequent re-emittance with the quantum coherence in a system of coherently excited molecular nitrogen ions (N2+) which are produced using a strong 800 nm femtosecond laser pulse. Such photon retention, facilitated by quantum coherence, keeps releasing directly-unmeasurable coherent photons for tens of picoseconds, but is able to be read-out by a time-delayed femtosecond pulse centered at 1580 nm via two-photon resonant absorption, resulting in a strong radiation at 329.3 nm. We reveal a pivotal role of the excited-state population to transmit such extremely weak re-emitted photons in this system. This new finding unveils the nature of the coherent quantum control in N2+ for the potential platform for optical information storage in the remote atmosphere, and facilitates further exploration of fundamental interactions in the quantum optical platform with strong-field ionized molecules.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China