Your conditions: Qun Hao
  • Ultralow loss hollow-core negative curvature fibers with nested elliptical antiresonance tubes

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Hollow-core negative curvature fibers can confine light within air core and have small nonlinearity and dispersion and high damage threshold, thereby attracting a great deal of interest in the field of hollow core fibers. However, reducing the loss of hollow-core negative curvature fibers is a serious problem. On this basis, three new types of fibers with different nested tube structures are proposed in the near-infrared spectral regions and compared in detail with a previously proposed hollow-core negative curvature fiber. We used finite-element method for numerical simulation studies of their transmission loss, bending loss, and single-mode performance, and then the transmission performance of various structural fibers is compared. We found that the nested elliptical antiresonant fiber 1 has better transmission performance than that of the three other types of fibers in the spectral range of 0.72-1.6 {\mu}m. Results show that the transmission loss of the LP01 mode is as low as 6.45*10-6 dB/km at {\lambda} = 1.06 {\mu}m. To the best of our knowledge, the record low level of transmission loss of hollow-core antiresonant fibers with nested tube structures was created. In addition, the nested elliptical antiresonant fiber 1 has better bending resistance, and its bending loss was below 2.99*10-2 dB/km at 5 cm bending radius.

  • Omnidirectional ghost imaging system && unwrapping-free panoramic ghost imaging

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To enlarge FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{\deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.

  • Spin-dependent metalens with intensity-adjustable dual-focused vortex beams

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Vortex beams with orbital angular momentum has been attracting tremendous attention due to their considerable applications ranging from optical tweezers to quantum information processing. Metalens, an ultra-compact and multifunctional device, provide a desired platform for designing vortex beams. A spin-dependent metalens can boost the freedom to further satisfy practical applications. By combining geometric phase and propagation phase, we propose and demonstrate an approach to design a spin-dependent metalens generating dual-focused vortex beams along longitudinal or transverse direction, i.e., metalenses with predesigned spin-dependent phase profiles. Under the illumination of an elliptical polarization incident beam, two spin-dependent focused vortex beams can be observed, and the relative focal intensity of them can be easily adjusted by modulating the ellipticity of the incident beam. Moreover, we also demonstrated that the separate distance between these dual-focused beams and their topological charges could be simultaneously tailored at will, which may have a profound impact on optical trapping and manipulation in photonics.

  • Window Filtering Algorithm for Pulsed Light Coherent Combining of Low Repetition Frequency

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The multi-dithering method has been well verified in phase locking of polarization coherent combination experiment. However, it is hard to apply to low repetition frequency pulsed lasers, since there exists an overlap frequency domain between pulse laser and the amplitude phase noise and traditional filters cannot effectively separate phase noise. Aiming to solve the problem in this paper, we propose a novel method of pulse noise detection, identification, and filtering based on the autocorrelation characteristics between noise signals. In the proposed algorithm, a self-designed window algorithm is used to identify the pulse, and then the pulse signal group in the window is replaced by interpolation, which effectively filter the pulse signal doped in the phase noise within 0.1 ms. After filtering the pulses in the phase noise, the phase difference of two pulsed beams (10 kHz) is successfully compensated to zero in 1 ms, and the coherent combination of closed-loop phase lock is realized. At the same time, the phase correction times are few, the phase lock effect is stable, and the final light intensity increases to the ideal value (0.9 Imax).

  • Temporally and Spatially variant-resolution illumination patterns in computational ghost imaging

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Conventional computational ghost imaging (CGI) uses light carrying a sequence of patterns with uniform-resolution to illuminate the object, then performs correlation calculation based on the light intensity value reflected by the target and the preset patterns to obtain object image. It requires a large number of measurements to obtain high-quality images, especially if high-resolution images are to be obtained. To solve this problem, we developed temporally variable-resolution illumination patterns, replacing the conventional uniform-resolution illumination patterns with a sequence of patterns of different imaging resolutions. In addition, we propose to combine temporally variable-resolution illumination patterns and spatially variable-resolution structure to develop temporally and spatially variable-resolution (TSV) illumination patterns, which not only improve the imaging quality of the region of interest (ROI) but also improve the robustness to noise. The methods using proposed illumination patterns are verified by simulations and experiments compared with CGI. For the same number of measurements, the method using temporally variable-resolution illumination patterns has better imaging quality than CGI, but it is less robust to noise. The method using TSV illumination patterns has better imaging quality in ROI than the method using temporally variable-resolution illumination patterns and CGI under the same number of measurements. We also experimentally verify that the method using TSV patterns have better imaging performance when applied to higher resolution imaging. The proposed methods are expected to solve the current computational ghost imaging that is difficult to achieve high-resolution and high-quality imaging.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China