Your conditions: Mei Wu
  • Electron microscopy probing electron-photon interactions in SiC nanowires with ultra-wide energy and momentum match

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Nanoscale materials usually can trap light and strongly interact with it leading to many photonic device applications. The light-matter interactions are commonly probed by optical spectroscopy, which, however, have some limitations such as diffraction-limited spatial resolution, tiny momentum transfer and non-continuous excitation/detection. In this work, using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) with ultra-wide energy and momentum match and sub-nanometer spatial resolution, we study the optical microcavity resonant spectroscopy in a single SiC nanowire. The longitudinal Fabry-Perot (FP) resonating modes and the transverse whispering-gallery modes (WGMs) are simultaneously excited and detected, which span from near-infrared (~ 1.2 {\mu}m) to ultraviolet (~ 0.2 {\mu}m) spectral regime and the momentum transfer can be ranging up to 108 cm{^{-1}}. The size effects on the resonant spectra of nanowires are also revealed. Moreover, the nanoscale decay length of resonant EELS is revealed, which is contributed by the strongly localized electron-photon interactions in the SiC nanowire. This work provides a new alternative technique to investigate the optical resonating spectroscopy of a single nanowire structure and to explore the light-matter interactions in dielectric nanostructures, which is also promising for modulating free electrons via photonic structures.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China