您选择的条件: Xiang Xi
  • Realization of a quadrupole topological insulator phase in a gyromagnetic photonic crystal

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The field of topological photonics was initiated with the realization of a Chern insulator phase in a gyromagnetic photonic crystal (PhC) with broken time-reversal symmetry (T), hosting chiral edge states that are topologically protected propagating modes. Recent advances in higher-order band topology have discovered another type of topological state, as manifested by those modes localized at the corners of a sample, which are known as corner states. Here we report the realization of a quadrupole higher-order topological insulator phase in a gyromagnetic PhC, induced by a topological phase transition from the previously demonstrated Chern insulator phase. The evolution of the boundary modes from propagating chiral edge states to localized corner states has been characterized by microwave measurements. We also demonstrate topological bound states in the continuum, when the gyromagnetic PhC is magnetically tuned. These results extend the quadrupole topological insulator phase into T-broken systems, and integrate topologically protected propagating and localized modes in the same platform.

  • A topological Dirac-vortex parametric phonon laser

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Nonlinear topological photonic and phononic systems have recently aroused intense interests in exploring new phenomena that have no counterparts in electronic systems. The squeezed bosonic interaction in these systems is particularly interesting, because it can modify the vacuum fluctuations of topological states, drive them into instabilities, and lead to topological parametric lasers. However, these phenomena remain experimentally elusive because of limited nonlinearities in most existing topological bosonic systems. Here, we experimentally realized topological parametric lasers based on nonlinear nanoelectromechanical Dirac-vortex cavities with strong squeezed interaction. Specifically, we parametrically drove the Dirac-vortex cavities to provide phase-sensitive amplification for topological phonons, and observed phonon lasing above the threshold. Additionally, we confirmed that the lasing frequency is robust against fabrication disorders and that the free spectral range defies the universal inverse scaling law with increased cavity size, which benefit the realization of large-area single-mode lasers. Our results represent an important advance in experimental investigations of topological physics with large bosonic nonlinearities and parametric gain.

  • Second-Harmonic Generation in Etchless Lithium Niobate Nanophotonic Waveguides with Bound States in the Continuum

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Bound states in the continuum (BICs) have been extensively studied in various systems since its first proposal in quantum mechanics. Photonic BICs can enable optical mode confinement and provide field enhancement for nonlinear optics, but they have rarely been explored in nonlinear integrated photonic waveguides. Applying BICs in photonic integrated circuits enables low-loss light guidance and routing in low-refractive-index waveguides on high-refractive-index substrates, which is suitable for integrated photonics with nonlinear materials. Here, we report experimental demonstration of second-harmonic generation from telecom to near-visible wavelengths on an etchless lithium niobate platform by using a photonic BIC for the second-harmonic mode. The devices feature second-harmonic conversion efficiency of 0.175%W-1cm-2 and excellent thermal stability with a wavelength shift of only 1.7 nm from 25{\deg}C to 100{\deg}C. Our results represent a new paradigm of nonlinear integrated photonics on a cost-effective and convenient platform, which can enable a broad range of on-chip applications such as optical parametric generation, signal processing, and quantum photonics.

  • Unraveling the Angular Symmetry of Optical Force in a Solid Dielectric

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The textbook-accepted formulation of electromagnetic force was proposed by Lorentz in the 19th century, but its validity has been challenged due to incompatibility with the special relativity and momentum conservation. The Einstein-Laub formulation, which can reconcile those conflicts, was suggested as an alternative to the Lorentz formulation. However, intense debates on the exact force are still going on due to lack of experimental evidence. Here, we report the first experimental investigation of angular symmetry of optical force inside a solid dielectric, aiming to distinguish the two formulations. The experiments surprisingly show that the optical force exerted by a Gaussian beam has components with the angular mode number of both 2 and 0, which cannot be explained solely by the Lorentz or the Einstein-Laub formulation. Instead, we found a modified Helmholtz theory by combining the Lorentz force with additional electrostrictive force could explain our experimental results. Our results represent a fundamental leap forward in determining the correct force formulation, and will update the working principles of many applications involving electromagnetic forces.

  • Room-temperature continuous-wave Dirac-vortex topological lasers on silicon

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for single-mode large-area lasers. Here, we experimentally realize the first Dirac-vortex topological lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave single-mode linearly polarized vertical laser emission at a telecom wavelength. Most importantly, we confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心