您选择的条件: Kun Ding
  • Exceptional Non-Abelian Topology in Multiband Non-Hermitian Systems

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Defective spectral degeneracy, known as exceptional point (EP), lies at the heart of various intriguing phenomena in optics, acoustics, and other non-conservative systems. Despite extensive studies in the past two decades, the \textit{collective} behaviors (e.g., annihilation, coalescence, braiding, etc.) involving multiple exceptional points or lines and their interplay have been rarely understood. Here we put forward a universal non-Abelian conservation rule governing these collective behaviors in generic multiband non-Hermitian systems and uncover several counter-intuitive phenomena. We demonstrate that two EPs with opposite charges (even the pairwise created) do not necessarily annihilate, depending on how they approach each other. Furthermore, we unveil that the conservation rule imposes strict constraints on the permissible exceptional-line configurations. It excludes structures like Hopf link yet permits novel staggered rings composed of non-commutative exceptional lines. These intriguing phenomena are illustrated by concrete models which could be readily implemented in platforms like coupled acoustic cavities, optical waveguides, and ring resonators. Our findings lay the cornerstone for a comprehensive understanding of the exceptional non-Abelian topology and shed light on the versatile manipulations and applications based on exceptional degeneracies in non-conservative systems.

  • Geometry-dependent skin effects in reciprocal photonic crystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Skin effect that all eigenmodes within a frequency range become edge states is dictated by the topological properties of complex eigenvalues unique in non-Hermitian systems. The prevailing attempts to realize such a fascinating effect are confined to either one-dimensional or nonreciprocal systems exhibiting asymmetric couplings. Here, inspired by a recent model Hamiltonian theory, we propose a realistic reciprocal two-dimensional (2D) photonic crystal (PhC) system that shows the desired skin effect. Specifically, we establish a routine for designing such non-Hermitian systems via revealing the inherent connections between the non-trivial eigenvalue topology of order-2 exceptional points (EPs) and the skin effects. Guided by the proposed strategy, we successfully design a 2D PhC that possesses the EPs with nonzero eigenvalue winding numbers. The spectral area along a specific wavevector direction is then formed by leveraging the symmetry of the macroscopic geometry and the unit cell. The projected-band-structure calculations are performed to demonstrate that the desired skin effect exists at the specific crystalline interfaces. We finally employ time-domain simulations to vividly illustrate this phenomenon by exciting a pulse at the center of a finite-sized PhC. Our results form a solid basis for further experimental confirmations and applications of the skin effect.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心