Your conditions: Tiancheng Zhao
  • Nonreciprocal thermal radiation based on Fibonacci quasi-periodic structures

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: To violate Kirchhoff s law is very important in the areas of thermal radiation. However, due to the weak nonreciprocity in natural materials, it is necessary to engineer novel structures to break the balance between emission and absorption. In this work, we introduce magneto-optical material into Fibonacci photonic crystals. Assisted by the nonreciprocity of the magneto-optical material and the excitation of Tamm plasmon polaritons, strong nonreciprocal thermal radiation can be realized. The difference between absorption and emission at wavelength of 16 {\mu}m can reach 0.9 at the incident angle of 60o. The distributions of the magnetic field are also calculated to verify the underlying physical origin. By engineering the parameters of the structure, it is found that strong nonreciprocal thermal radiation can be achieved at shorter wavelength and smaller incident angle. The results indicate that the Fibonacci magnetophotonic crystals are the promising candidate to engineer the nonreciprocal emission for various requirements.

  • Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Kirchhoff s law is one of the most fundamental law in thermal radiation. The violation of traditional Kirchhoff s law provides opportunities for higher energy conversion efficiency. Various micro-structures have been proposed to realize single-band nonreciprocal thermal emitters. However, dual-band nonreciprocal thermal emitters remain barely investigated. In this paper, we introduce magneto-optical material into a cascading one-dimensional (1-D) magnetophotonic crystal (MPC) heterostructure composed of two 1-D MPCs and a metal layer. Assisted by the nonreciprocity of the magneto-optical material and the coupling effect of two optical Tamm states (OTSs), a dual-band nonreciprocal lithography-free thermal emitter is achieved. The emitter exhibits strong dual-band nonreciprocal radiation at the wavelengths of 15.337 um and 15.731 um when the external magnetic field is 3 T and the angle of incidence is 56 degree. Besides, the magnetic field distribution is also calculated to confirm that the dual-band nonreciprocal radiation originates from the coupling effect between two OTSs. Our work may pave the way for constructing dual-band and multi-band nonreciprocal thermal emitters.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China