Your conditions: Mang Feng
  • Geometrical bounds on irreversibility in squeezed thermal bath

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Irreversible entropy production (IEP) plays an important role in quantum thermodynamic processes. Here we investigate the geometrical bounds of IEP in nonequilibrium thermodynamics by exemplifying a system coupled to a squeezed thermal bath subject to dissipation and dephasing, respectively. We find that the geometrical bounds of the IEP always shift in contrary way under dissipation and dephasing, where the lower and upper bounds turning to be tighter occurs in the situation of dephasing and dissipation, respectively. However, either under dissipation or under dephasing, we may reduce both the critical time of the IEP itself and the critical time of the bounds for reaching an equilibrium by harvesting the benefits of squeezing effects, in which the values of the IEP, quantifying the degree of thermodynamic irreversibility, also becomes smaller. Therefore, due to the nonequilibrium nature of the squeezed thermal bath, the system-bath interaction energy brings prominent impact on the IEP, leading to tightness of its bounds. Our results are not contradictory with the second law of thermodynamics by involving squeezing of the bath as an available resource, which can improve the performance of quantum thermodynamic devices.

  • Topological optomechanical amplifier with synthetic $\mathcal{PT}$-symmetry

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: We propose how to achieve synthetic $\mathcal{PT}$ symmetry in optomechanics without using any active medium. We find that harnessing the Stokes process in such a system can lead to the emergence of exceptional point (EP), i.e., the coalescing of both the eigenvalues and the eigenvectors of the system. By encircling the EP, both non-reciprocal optical amplification and chiral mode switching can be achieved. As a result, our synthetic $\mathcal{PT}$-symmetric optomechanics works as a topological optomechanical amplifier. This provides a surprisingly simplified route to realize $\mathcal{PT}$-symmetric optomechanics, indicating that a wide range of EP devices can be created and utilized for various applications such as topological optical engineering and nanomechanical processing or sensing.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China