Your conditions: Carmelo Rosales-Guzmán
  • Toward arbitrary spin-orbit flat optics via structured geometric phase gratings

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Reciprocal spin-orbit coupling (SOC) via geometric phase with flat optics provides a promising platform for shaping and controlling paraxial structured light. Current devices, from the pioneering q-plates to the recent J-plates, provide only spin-dependent wavefront modulation without amplitude control. However, achieving control over all the spatial dimensions of paraxial SOC states requires spin-dependent control of corresponding complex amplitude, which remains challenging for flat optics. Here, to address this issue, we present a new type of flat-optics elements termed structured geometric phase gratings that is capable of conjugated complex-amplitude control for orthogonal input circular polarizations. By using a microstructured liquid crystal photoalignment technique, we engineered a series of flat-optics elements and experimentally showed their excellent precision in arbitrary SOC control. This principle unlocks the full-field control of paraxial structured light via flat optics, providing a promising way to develop an information exchange and processing units for general photonic SOC states, as well as extra-/intracavity mode convertors for high-precision laser beam shaping.

  • Measuring the non-separability of spatially disjoint vectorial fields

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Vectorial forms of structured light that are non-separable in their spatial and polarisation degrees of freedom have become topical of late, with an extensive toolkit for their creation and control. In contrast, the toolkit for quantifying their non-separability, the inhomogeneity of the polarisation structure, is far less developed, and in some cases fails altogether. To overcome this, here we introduce a new measure for vectorial light, which we demonstrate both theoretically and experimentally. We consider the general case where the local polarisation homogeneity can vary spatially across the field, from scalar to vector, a condition that can arise naturally if the composite scalar fields are path separable during propagation, leading to spatially disjoint vectorial light. We show how the new measure correctly accounts for the local path-like separability of the individual scalar beams, which can have varying degrees of disjointness, even though the global vectorial field remains intact. Our work attempts to address a pressing issue in the analysis of such complex light fields, and raises important questions on spatial coherence in the context of vectorially polarised light.

  • Propagation-invariant high-dimensional orbital angular momentum states

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Photonic states encoded in spatial modes of paraxial light fields provide a promising platform for high-dimensional quantum information protocols and related studies, where several pioneering theoretical and experimental demonstrations have paved the path for future technologies. Crucially, critical issues encountered in free-space propagation still represent a major challenge. This is the case of asynchronous diffraction between spatial modes with different modal orders, which experience variations in their transverse structure upon free-space propagation. Here we address this issue by proposing an encoding method based on the use of Laguerre-Gaussian (LG) modes of the same modal order N to define a N + 1 dimensional space. Noteworthy, such modes endowed with orbital angular momentum (OAM) experience the same propagation aberrations featuring an identical Gouy phase and wavefront curvature. We demonstrate our proposal experimentally by using time-correlated-single-photon imaging combined with a digital propagation technique. Importantly, our technique allows to eliminate, without the use of imaging systems, all issues related to asynchronous diffraction, providing an accessible way to generate propagation-invariant OAM qudits for quantum optical protocols.

  • Observation of Anomalous Orbital Angular Momentum Conservation in Parametric Nonlinearity

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Orbital angular momentum (OAM) conservation plays an important role in shaping and controlling structured light with nonlinear optics. The OAM of a beam originating from three-wave mixing should be the sum or difference of the other two inputs because no light-matter OAM exchange occurs in parametric nonlinear interactions. Here, we report anomalous OAM conservation during parametric upconversion, in which a Hermite-Gauss mode signal interacts with a specially engineered pump capable of astigmatic transformation in a crystal, resulting in Laguerre-Gaussian mode sum-frequency generation (SFG). The anomaly here refers to the fact that the pump and signal carry no net OAM, while their SFG does. We show that the lost OAM with the opposite sign that maintains OAM conservation in the system is hidden in the residual pump. This unexpected OAM selection rule improves our understanding of OAM conservation in parametric nonlinear systems and may inspire new ideas for controlling OAM states via nonlinear optics, especially in quantum applications.

  • Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Exploring the physics and potential applications of vectorially structured light with propagation-invariant transverse structures has benefited many areas of modern optics and photonics. In this paper, we investigate the non-eigen vector modes of paraxial light fields, focusing on the propagation variations and revivals of their transverse structures, including both spatial and polarization structures. We show that the physical mechanism behind the variations and revivals of their transverse structure is linked to the evolution of the intramodal phases between the constituting spatial modes. Such evolution originates from fractional Gouy phases, or rather, Geometric-phase difference between spatial modes with different orders under a same unitary transformation. This underlying principle, provides a general guideline for shaping vectorially structured light with custom propagation-evolution properties, and may also inspire a wide variety of new applications based on structured light.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China