Your conditions: Dries Van Thourhout
  • Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Two-dimensional materials are attractive for constructing high-performance photonic chip-integrated photodetectors because of their remarkable electronic and optical properties and dangling-bond-free surfaces. However, the reported chip-integrated two-dimensional material photodetectors were mainly implemented with the configuration of metal-semiconductor-metal, suffering from high dark currents and low responsivities at high operation speed. Here, we report a van der Waals PN heterojunction photodetector, composed of p-type black phosphorous and n-type molybdenum telluride, integrated on a silicon nitride waveguide. The built-in electric field of the PN heterojunction significantly suppresses the dark current and improves the responsivity. Under a bias of 1 V pointing from n-type molybdenum telluride to p-type black phosphorous, the dark current is lower than 7 nA, which is more than two orders of magnitude lower than those reported in other waveguide-integrated black phosphorus photodetectors. An intrinsic responsivity up to 577 mA/W is obtained. Remarkably, the van der Waals PN heterojunction is tunable by the electrostatic doping to further engineer its rectification and improve the photodetection, enabling an increased responsivity of 709 mA/W. Besides, the heterojunction photodetector exhibits a response bandwidth of ~1.0 GHz and a uniform photodetection over a wide spectral range, as experimentally measured from 1500 to 1630 nm. The demonstrated chip-integrated van der Waals PN heterojunction photodetector with low dark current, high responsivity and fast response has great potentials to develop high-performance on-chip photodetectors for various photonic integrated circuits based on silicon, lithium niobate, polymer, etc.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China