Your conditions: Yang Chen
  • Multiple radio frequency measurement with an improved frequency resolution based on stimulated Brillouin scattering with a reduced gain bandwidth

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: A photonic-assisted multiple radio frequency (RF) measurement approach based on stimulated Brillouin scattering (SBS) and frequency-to-time mapping with high accuracy and high-frequency resolution is reported. A two-tone signal is single-sideband (SSB) modulated on an optical carrier via a dual-parallel Mach-Zehnder modulator to construct one SBS gain and two SBS losses for SBS gain bandwidth reduction. The unknown RF signal is also SSB modulated on a carrier that has been modulated by a sweep signal, thus the unknown RF signal is converted to a sweep optical signal along with the sweep optical carrier. The bandwidth-reduced SBS gain spectrum is detected by the sweep optical signals at different specific time, mapping the RF frequencies to the time domain. An experiment is performed. RF frequencies from 0.3 to 7.6 GHz are simultaneously measured with a root mean square error of less than 1 MHz. In addition, the frequency resolution of the measurement can be much lower than 10 MHz, which is now the best result in the RF frequency measurement methods employing the SBS effect.

  • Dielectric metasurface for independent complex-amplitude control of arbitrary two orthogonal states of polarization

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Metasurfaces are planar structures that can manipulate the amplitude, phase and polarization (APP) of light at subwavelength scale. Although various functionalities have been proposed based on metasurface, a most general optical control, i.e., independent complex-amplitude (amplitude and phase) control of arbitrary two orthogonal states of polarizations, has not yet been realized. Such level of optical control can not only cover the various functionalities realized previously, but also enable new functionalities that are not feasible before. Here, we propose a single-layer dielectric metasurface to realize this goal and experimentally demonstrate several advanced functionalities, such as two independent full-color printing images under arbitrary elliptically orthogonal polarizations and dual sets of printing-hologram integrations. Our work opens the way for a wide range of applications in advanced image display, information encoding, and polarization optics.

  • Photonics-enabled wavelet-like transform via nonlinear optical frequency sweeping and stimulated Brillouin scattering-based frequency-to-time mapping

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: A photonics-enabled wavelet-like transform system, characterized by multi-resolution time-frequency analysis, is proposed based on a typical stimulated Brillouin scattering (SBS) pump-probe setup using an optical nonlinear frequency-sweep signal. In the pump path, a continuous-wave optical signal is injected into an SBS medium to generate an SBS gain. In the probe path, a periodic nonlinear frequency-sweep optical signal with a time-varying chirp rate is generated, which is then modulated at a Mach-Zehnder modulator (MZM) by the electrical signal under test (SUT). The optical signal from the MZM is selectively amplified by the SBS gain and converted back to the electrical domain using a low-speed photodetector, implementing the periodic SBS-based frequency-to-time mapping (FTTM). The frequency-domain information corresponding to different periods is mapped to the time domain via the FTTM in the form of low-speed electrical pulses, which is then spliced to analyze the time-frequency relationship of the SUT in real-time. The time-varying chirp rate in each sweep period makes the signals with different frequencies have different frequency resolutions in the FTTM process, which is very similar to the characteristics of the wavelet transform, so we call it wavelet-like transform. An experiment is carried out. Multi-resolution time-frequency analysis of a variety of RF signals is carried out in a 4-GHz bandwidth limited only by the equipment.

  • An Ultrahigh-Q Microresonator on 4H-silicon-carbide-on-insulator Platform for Multiple Harmonics, Cascaded Raman Lasing and Kerr Comb Generations

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The realization of ultrahigh quality (Q) resonators regardless of the underpinning material platforms has been a ceaseless pursuit, because the high Q resonators provide an extreme environment of storage of light to enable observations of many unconventional nonlinear optical phenomenon with high efficiencies. Here, we demonstrate an ultra-high Q factor (7.1*10^6) microresonator on the 4H-silicon-carbide-on-insulator (4H-SiCOI) platform in which both \c{hi}^(2) and \c{hi}^(3) nonlinear processes of high efficiencies have been generated. Broadband frequency conversions, including second-, third-, fourth-harmonic generation were observed. Cascaded Raman lasing was demonstrated in the SiC microresonator for the first time to the best of our knowledge. Broadband Kerr frequency combs covering from 1300 to 1700 nm were achieved using a dispersion-engineered SiC microresonator. Our demonstration is a significant milestone in the development of SiC photonic integrated devices.

  • Photonics-assisted microwave pulse detection and frequency measurement based on pulse replication and frequency-to-time mapping

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: A photonics-assisted microwave pulse detection and frequency measurement scheme is proposed. The unknown microwave pulse is converted to the optical domain and then injected into a fiber loop for pulse replication, which makes it easier to identify the microwave pulse with large pulse repetition interval (PRI), whereas stimulated Brillouin scattering-based frequency-to-time mapping (FTTM) is utilized to measure the carrier frequency of the microwave pulse. A sweep optical carrier is generated and modulated by the unknown microwave pulse and a continuous-wave single-frequency reference, generating two different frequency sweep optical signals, which are combined and used as the probe wave to detect a fixed Brillouin gain spectrum. When the optical signal is detected in a photodetector, FTTM is realized and the frequency of the microwave pulse can be determined. An experiment is performed. For a fiber loop containing a 210-m fiber, pulse replication and FTTM of the pulses with a PRI of 20 {\mu}s and pulse width of 1.20, 1.00, 0.85, and 0.65 {\mu}s are realized. Under a certain sweep frequency chirp rate of 0.978 THz/s, the measurement errors are below {\pm}12 and {\pm}5 MHz by using one pair of pulses and multiple pairs of pulses, respectively. The influence of the sweep frequency chirp rate and pulse width on the measurement error has also been studied. To a certain extent, the faster the frequency sweep, the greater the frequency measurement error. For a specific sweep frequency chirp rate, the measurement error is almost unaffected by the pulse width to be measured.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China