Your conditions: Zhihao Lan
  • Topological photonic crystal fibers based on second-order corner modes

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Photonic crystal fibers represent one of the most active research fields in modern fiber optics. The recent advancements of topological photonics have inspired new fiber concepts and designs. Here, we demonstrate a new type of topological photonic crystal fibers based on second order photonic corner modes from the Su-Schrieffer-Heeger model. Different from previous works where the in-plane properties at $k_z=0$ have been mainly studied, we find that in the fiber configuration of $k_z>0$, a topological bandgap only exists when the propagation constant $k_z$ along the fiber axis is larger than a certain threshold and the emergent topological bandgap at large $k_z$ hosts two sets of corner fiber modes. We further investigate the propagation diagrams, propose a convenient way to tune the frequencies of the corner fiber modes within the topological bandgap and envisage multi-frequency and multi-channel transmission capabilities of this new type of fibers. Our work will not only have practical importance, but could also open a new area for fiber exploration where many existing higher-order topological photonic modes could bring exciting new opportunities for fiber designs and applications.

  • Comparative study of Hermitian and non-Hermitian topological dielectric photonic crystals

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The effects of gain and loss on the band structures of a bulk topological dielectric photonic crystal (PC) with $C_{6v}$ symmetry and the PC-air-PC interface are studied based on first-principle calculation. To illustrate the importance of parity-time (PT) symmetry, three systems are considered, namely the PT-symmetric, PT-asymmetric, and lossy systems. We find that the system with gain and loss distributed in a PT symmetric manner exhibits a phase transition from a PT exact phase to a PT broken phase as the strength of the gain and loss increases, while for the PT-asymmetric and lossy systems, no such phase transition occurs. Furthermore, based on the Wilson loop calculation, the topology of the PT-symmetric system in the PT exact phase is demonstrated to keep unchanged as the Hermitian system. At last, different kinds of edge states in Hermitian systems under the influences of gain and loss are studied and we find that while the eigenfrequencies of nontrivial edge states become complex conjugate pairs, they keep real for the trivial defect states.

  • Topologically protected second-harmonic generation via doubly resonant high-order photonic modes

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Topology-driven nonlinear light-matter effects open up new paradigms for both topological photonics and nonlinear optics. Here, we propose to achieve high-efficiency second-harmonic generation in a second-order photonic topological insulator. Such system hosts highly localized topological corner states with large quality factors for both fundamental and second harmonic waves, which could be matched perfectly in frequency by simply tuning the structural parameters. Through the nonlinear interaction of the doubly resonant topological corner states, unprecedented frequency conversion efficiency is predicted. In addition, the robustness of the nonlinear process against defects is also demonstrated. Our work opens up new avenues toward topologically protected nonlinear frequency conversion using high-order photonic topological modes.

  • Approaching the Fundamental Limit of Orbital Angular Momentum Multiplexing Through a Hologram Metasurface

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Establishing and approaching the fundamental limit of orbital angular momentum (OAM) multiplexing are necessary and increasingly urgent for current multiple-input multiple-output research. In this work, we elaborate the fundamental limit in terms of independent scattering channels (or degrees of freedom of scattered fields) through angular-spectral analysis, in conjunction with a rigorous Green function method. The scattering channel limit is universal for arbitrary spatial mode multiplexing, which is launched by a planar electromagnetic device, such as antenna, metasurface, etc, with a predefined physical size. As a proof of concept, we demonstrate both theoretically and experimentally the limit by a metasurface hologram that transforms orthogonal OAM modes to plane-wave modes scattered at critically separated angular-spectral regions. Particularly, a minimax optimization algorithm is applied to suppress angular spectrum aliasing, achieving good performances in both full-wave simulation and experimental measurement at microwave frequencies. This work offers a theoretical upper bound and corresponding approach route for engineering designs of OAM multiplexing.

  • A brief review of topological photonics in one, two, and three dimensions

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Topological photonics has attracted increasing attention in recent years due to the unique opportunities it provides to manipulate light in a robust way immune to disorder and defects. Up to now, diverse photonic platforms, rich physical mechanisms and fruitful device applications have been proposed for topological photonics, including one-way waveguide, topological lasing, topological nanocavity, Dirac and Weyl points, Fermi arcs, nodal lines, etc. In this review, we provide an introduction to the field of topological photonics through the lens of topological invariants and bulk-boundary correspondence in one, two, and three dimensions, which may not only offer a unified understanding about the underlying robustness of diverse and distinct topological phenomena of light, but could also inspire further developments by introducing new topological invariants and unconventional bulk-boundary correspondence to the research of topological photonics.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China