您选择的条件: Meiyu Peng
  • Anti-$\mathcal{PT}$-symmetric Kerr gyroscope

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Non-Hermitian systems can exhibit unconventional spectral singularities called exceptional points (EPs). Various EP sensors have been fabricated in recent years, showing strong spectral responses to external signals. Here we propose how to achieve a nonlinear anti-parity-time ($\mathcal{APT}$) gyroscope by spinning an optical resonator. We show that, in the absence of any nonlinearity, the sensitivity or optical mode splitting of the linear device can be magnified up to 3 orders than that of the conventional device without EPs. Remarkably, the $\mathcal{APT}$ symmetry can be broken when including the Kerr nonlinearity of the materials and, as the result, the detection threshold can be significantly lowered, i.e., much weaker rotations which are well beyond the ability of a linear gyroscope can now be detected with the nonlinear device. Our work shows the powerful ability of $\mathcal{APT}$ gyroscopes in practice to achieve ultrasensitive rotation measurement.

  • Nonreciprocal slow or fast light in anti-$\mathcal{PT}$-symmetric optomechanics

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Non-Hermitian systems with anti-parity-time ($\mathcal{APT}$) symmetry have revealed rich physics beyond conventional systems. Here, we study optomechanics in an $\mathcal{APT}$-symmetric spinning resonator and show that, by tuning the rotating speed to approach the exceptional point (EP) or the non-Hermitian spectral degeneracy, nonreciprocal light transmission with a high isolation ratio can be realized. Accompanying this process, nonreciprocal group delay or advance is also identified in the vicinity of EP. Our work sheds new light on manipulating laser propagation with optomechanical EP devices and, in a broader view, can be extended to explore a wide range of $\mathcal{APT}$-symmetric effects, such as $\mathcal{APT}$-symmetric phonon lasers, $\mathcal{APT}$-symmetric topological effects, and $\mathcal{APT}$-symmetric force sensing or accelerator.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心