Your conditions: Peng Chen
  • Broadband Cross-Circular Polarization Carpet Cloaking based on a Phase Change Material Metasurface in the Mid-infrared Region

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: In view of the fact that most invisibility devices focus on linear polarization cloaking and that the characteristics of mid infrared cloaking are rarely studied, we propose a cross circularly polarized invisibility carpet cloaking device in the mid infrared band. Based on the Pancharatnam Berry phase principle, the unit cells with the cross circular polarization gradient phase were carefully designed and constructed into a metasurface. In order to achieve tunable cross circular polarization carpet cloaks, a phase change material is introduced into the design of the unit structure. When the phase change material is in amorphous and crystalline states, the proposed metasurface unit cells can achieve high efficiency cross polarization conversion and reflection intensity can be tuned. According to the phase compensation principle of carpet cloaking, we construct a metasurface cloaking device with a phase gradient using the designed unit structure. From the near and far field distributions, the cross circular polarization cloaking property is confirmed in the broadband wavelength range. The proposed cloaking device can effectively resist detection of cross-circular polarization.

  • Toward arbitrary spin-orbit flat optics via structured geometric phase gratings

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Reciprocal spin-orbit coupling (SOC) via geometric phase with flat optics provides a promising platform for shaping and controlling paraxial structured light. Current devices, from the pioneering q-plates to the recent J-plates, provide only spin-dependent wavefront modulation without amplitude control. However, achieving control over all the spatial dimensions of paraxial SOC states requires spin-dependent control of corresponding complex amplitude, which remains challenging for flat optics. Here, to address this issue, we present a new type of flat-optics elements termed structured geometric phase gratings that is capable of conjugated complex-amplitude control for orthogonal input circular polarizations. By using a microstructured liquid crystal photoalignment technique, we engineered a series of flat-optics elements and experimentally showed their excellent precision in arbitrary SOC control. This principle unlocks the full-field control of paraxial structured light via flat optics, providing a promising way to develop an information exchange and processing units for general photonic SOC states, as well as extra-/intracavity mode convertors for high-precision laser beam shaping.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China