您选择的条件: Hongsheng Chen
  • Emerging chiral optics from chiral interfaces

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Twisted atomic bilayers are emerging platforms for manipulating chiral light-matter interaction at the extreme nanoscale, due to their inherent magnetoelectric responses induced by the finite twist angle and quantum interlayer coupling between the atomic layers. Recent studies have reported the direct correspondence between twisted atomic bilayers and chiral metasurfaces, which features a chiral surface conductivity, in addition to the electric and magnetic surface conductivities. However, far-field chiral optics in light of these consitututive conductivities remains unexplored. Within the framework of the full Maxwell equations, we find that the chiral surface conductivity can be exploited to realize perfect polarization transformation between linearly polarized light. Remarkably, such an exotic chiral phenomenon can occur either for the reflected or transmitted light.

  • Non-Hermitian skin effect and delocalized edge states in photonic crystals with anomalous parity-time symmetry

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Non-Hermitian skin effect denotes the exponential localization of a large number of eigen-states in a non-Hermitian lattice under open boundary conditions. Such a non-Hermiticity-induced skin effect can offset the penetration depth of in-gap edge states, leading to counterintuitive delocalized edge modes, which have not been studied in a realistic photonic system such as photonic crystals. Here, we analytically reveal the non-Hermitian skin effect and the delocalized edge states in Maxwell's equations for non-Hermitian chiral photonic crystals with anomalous parity-time symmetry. Remarkably, we rigorously prove that the penetration depth of the edge states is inversely proportional to the frequency and the real part of the chirality. Our findings pave a way towards exploring novel non-Hermitian phenomena and applications in continuous Maxwell's equations.

  • Free-electron Brewster radiation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Free-electron radiation offers an enticing route to create light emission at arbitrary spectral regime. However, this type of light emission is generally weak, which is intrinsically limited by the weak particle-matter interaction and unavoidably impedes the development of many promising applications, such as the miniaturization of free-electron radiation sources and high-energy particle detectors. Here we reveal a mechanism to enhance the particle-matter interaction by exploiting the pseudo-Brewster effect of gain materials - presenting an enhancement of at least four orders of magnitude for the light emission. This mechanism is enabled by the emergence of an unprecedented phase diagram that maps all phenomena of free-electron radiation into three distinct phases in a gain-thickness parameter space, namely the conventional, intermediate, and Brewster phases, when an electron penetrates a dielectric slab with a modest gain and a finite thickness. Essentially, our revealed mechanism corresponds to the free-electron radiation in the Brewster phase, which also uniquely features ultrahigh directionality, always at the Brewster angle, regardless of the electron velocity. Counterintuitively, we find that the intensity of this free-electron Brewster radiation is insensitive to the Fabry-Perot resonance condition and thus the variation of slab thickness, and moreover, a weaker gain could lead to a stronger enhancement for the light emission. The scheme of free-electron Brewster radiation, especially along with its compatibility with low-energy electrons, may enable the development of high-directionality high-intensity light sources at any frequency.

  • Low-velocity-favored transition radiation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: When a charged particle penetrates through an optical interface, photon emissions emerge - a phenomenon known as transition radiation. Being paramount to fundamental physics, transition radiation has enabled many applications from high-energy particle identification to novel light sources. A rule of thumb in transition radiation is that the radiation intensity generally decreases with the particle velocity v; as a result, low-energy particles are not favored in practice. Here we find that there exist situations where transition radiation from particles with extremely low velocities (e.g. v/c<0.001) exhibits comparable intensity as that from high-energy particles (e.g. v/c=0.999), where c is light speed in free space. The comparable radiation intensity implies an extremely high photon extraction efficiency from low-energy particles, up to eight orders of magnitude larger than that from high-energy particles. This exotic phenomenon of low-velocity-favored transition radiation originates from the excitation of Ferrell-Berreman modes in epsilon-near-zero materials. Our findings may provide a promising route towards the design of integrated light sources based on low-energy electrons and specialized detectors for beyond-standard-model particles.

  • Anomalous free-electron radiation beyond the conventional formation time

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Free-electron radiation is a fundamental photon emission process that is induced by fast-moving electrons interacting with optical media. Historically, it has been understood that, just like any other photon emission process, free-electron radiation must be constrained within a finite time interval known as the "formation time", whose concept is applicable to both Cherenkov radiation and transition radiation, the two basic mechanisms describing radiation from a bulk medium and from an interface, respectively. Here we reveal an alternative mechanism of free-electron radiation far beyond the previously defined formation time. It occurs when a fast electron crosses the interface between vacuum and a plasmonic medium supporting bulk plasmons. While emitted continuously from the crossing point on the interface - thus consistent with the features of transition radiation - the anomalous radiation beyond the conventional formation time is supported by a long tail of bulk plasmons following the electron's trajectory deep into the plasmonic medium. Such a plasmonic tail mixes surface and bulk effects, and provides a sustained channel for electron-interface interaction. These results also settle the historical debate in Ferrell radiation, regarding whether it is a surface or bulk effect, from transition radiation or plasmonic oscillation.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心