您选择的条件: Baile Zhang
  • Realization of a quadrupole topological insulator phase in a gyromagnetic photonic crystal

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The field of topological photonics was initiated with the realization of a Chern insulator phase in a gyromagnetic photonic crystal (PhC) with broken time-reversal symmetry (T), hosting chiral edge states that are topologically protected propagating modes. Recent advances in higher-order band topology have discovered another type of topological state, as manifested by those modes localized at the corners of a sample, which are known as corner states. Here we report the realization of a quadrupole higher-order topological insulator phase in a gyromagnetic PhC, induced by a topological phase transition from the previously demonstrated Chern insulator phase. The evolution of the boundary modes from propagating chiral edge states to localized corner states has been characterized by microwave measurements. We also demonstrate topological bound states in the continuum, when the gyromagnetic PhC is magnetically tuned. These results extend the quadrupole topological insulator phase into T-broken systems, and integrate topologically protected propagating and localized modes in the same platform.

  • Free-electron Brewster radiation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Free-electron radiation offers an enticing route to create light emission at arbitrary spectral regime. However, this type of light emission is generally weak, which is intrinsically limited by the weak particle-matter interaction and unavoidably impedes the development of many promising applications, such as the miniaturization of free-electron radiation sources and high-energy particle detectors. Here we reveal a mechanism to enhance the particle-matter interaction by exploiting the pseudo-Brewster effect of gain materials - presenting an enhancement of at least four orders of magnitude for the light emission. This mechanism is enabled by the emergence of an unprecedented phase diagram that maps all phenomena of free-electron radiation into three distinct phases in a gain-thickness parameter space, namely the conventional, intermediate, and Brewster phases, when an electron penetrates a dielectric slab with a modest gain and a finite thickness. Essentially, our revealed mechanism corresponds to the free-electron radiation in the Brewster phase, which also uniquely features ultrahigh directionality, always at the Brewster angle, regardless of the electron velocity. Counterintuitively, we find that the intensity of this free-electron Brewster radiation is insensitive to the Fabry-Perot resonance condition and thus the variation of slab thickness, and moreover, a weaker gain could lead to a stronger enhancement for the light emission. The scheme of free-electron Brewster radiation, especially along with its compatibility with low-energy electrons, may enable the development of high-directionality high-intensity light sources at any frequency.

  • Low-velocity-favored transition radiation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: When a charged particle penetrates through an optical interface, photon emissions emerge - a phenomenon known as transition radiation. Being paramount to fundamental physics, transition radiation has enabled many applications from high-energy particle identification to novel light sources. A rule of thumb in transition radiation is that the radiation intensity generally decreases with the particle velocity v; as a result, low-energy particles are not favored in practice. Here we find that there exist situations where transition radiation from particles with extremely low velocities (e.g. v/c<0.001) exhibits comparable intensity as that from high-energy particles (e.g. v/c=0.999), where c is light speed in free space. The comparable radiation intensity implies an extremely high photon extraction efficiency from low-energy particles, up to eight orders of magnitude larger than that from high-energy particles. This exotic phenomenon of low-velocity-favored transition radiation originates from the excitation of Ferrell-Berreman modes in epsilon-near-zero materials. Our findings may provide a promising route towards the design of integrated light sources based on low-energy electrons and specialized detectors for beyond-standard-model particles.

  • Observation of Weyl point pair annihilation in a gyromagnetic photonic crystal

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Weyl semimetals are gapless three-dimensional (3D) phases whose bandstructures contain Weyl point (WP) degeneracies. WPs carry topological charge and can only be eliminated by mutual annihilation, a process that generates the various topologically distinct 3D insulators. Time reversal (T) symmetric Weyl phases, containing a minimum of four WPs, have been extensively studied in real materials, photonic metamaterials, and other systems. Weyl phases with a single WP pair - the simplest configuration of WPs - are more elusive as they require T-breaking. Here, we implement a microwave-scale gyromagnetic 3D photonic crystal, and use field-mapping experiments to track a single pair of ideal WPs whose momentum space locations depend strongly on the biasing magnetic field. By continuously varying the field strength, we observe the annihilation of the WPs, and the formation of a 3D Chern insulator, a previously unrealised member of the family of 3D topological insulators (TIs). Surface measurements show, in unprecedented detail, how the Fermi arc states connecting the WPs evolve into TI surface states.

  • Anomalous free-electron radiation beyond the conventional formation time

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Free-electron radiation is a fundamental photon emission process that is induced by fast-moving electrons interacting with optical media. Historically, it has been understood that, just like any other photon emission process, free-electron radiation must be constrained within a finite time interval known as the "formation time", whose concept is applicable to both Cherenkov radiation and transition radiation, the two basic mechanisms describing radiation from a bulk medium and from an interface, respectively. Here we reveal an alternative mechanism of free-electron radiation far beyond the previously defined formation time. It occurs when a fast electron crosses the interface between vacuum and a plasmonic medium supporting bulk plasmons. While emitted continuously from the crossing point on the interface - thus consistent with the features of transition radiation - the anomalous radiation beyond the conventional formation time is supported by a long tail of bulk plasmons following the electron's trajectory deep into the plasmonic medium. Such a plasmonic tail mixes surface and bulk effects, and provides a sustained channel for electron-interface interaction. These results also settle the historical debate in Ferrell radiation, regarding whether it is a surface or bulk effect, from transition radiation or plasmonic oscillation.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心