您选择的条件: J. Q. You
  • Entanglement Emerges from Dissipation-Structured Quantum Self-Organization

    分类: 光学 >> 量子光学 提交时间: 2023-02-20

    摘要: Entanglement is a holistic property of multipartite quantum systems, which is accompanied by the establishment of nonclassical correlations between subsystems. Most entanglement mechanisms can be described by a coherent interaction Hamiltonian, and entanglement develops over time. In other words, the generation of entanglement has a time arrow. Dissipative structure theory directs the evolving time arrow of a non-equilibrium system. By dissipating energy to the environment, the system establishes order out of randomness. This is also referred to as self-organization. Here, we explore a new mechanism to create entanglement, utilizing the wisdom of dissipative structure theory in quantum systems. The entanglement between subsystems can emerge via the dissipation-structured correlation. This method requires a non-equilibrium initial state and cooperative dissipation, which can be implemented in a variety of waveguide-coupled quantum systems.

  • Squeezing Microwaves by Magnetostriction

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Squeezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical nonlinear processes. Here, we show how a nonlinear magnetostrictive interaction in a ferrimagnet in cavity magnomechanics can be used to reduce quantum noise of the electromagnetic field. We show optimal parameter regimes where a substantial and stationary squeezing of the microwave output field can be achieved. The scheme can be realized within the reach of current technology in cavity electromagnonics and magnomechanics. Our work provides a new and practicable approach for producing squeezed vacuum states of electromagnetic fields, and may find promising applications in quantum information processing and quantum metrology.

  • Optical sensing of magnons via the magnetoelastic displacement

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We show how to measure a steady-state magnon population in a magnetostatic mode of a ferromagnet or ferrimagnet, such as yttrium iron garnet. We adopt an optomechanical approach and utilize the magnetoelasticity of the ferromagnet. The magnetostrictive force dispersively couples magnons to the deformation displacement of the ferromagnet, which is proportional to the magnon population. By further coupling the mechanical displacement to an optical cavity that is resonantly driven by a weak laser, the magnetostrictively induced displacement can be sensed by measuring the phase quadrature of the optical field. The phase shows an excellent linear dependence on the magnon population for a not very large population, and can thus be used as a `magnometer' to measure the magnon population. We further study the effect of thermal noises, and find a high signal-to-noise ratio even at room temperature. At cryogenic temperatures, the resolution of magnon excitation numbers is essentially limited by the vacuum fluctuations of the phase, which can be significantly improved by using a squeezed light.

  • Quantum network with magnonic and mechanical nodes

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A quantum network consisting of magnonic and mechanical nodes connected by light is proposed. Recent years have witnessed a significant development in cavity magnonics based on collective spin excitations in ferrimagnetic crystals, such as yttrium iron garnet (YIG). Magnonic systems are considered to be a promising building block for a future quantum network. However, a major limitation of the system is that the coherence time of the magnon excitations is limited by their intrinsic loss (typically in the order of 1 $\mu$s for YIG). Here, we show that by coupling the magnonic system to a mechanical system using optical pulses, an arbitrary magnonic state (either classical or quantum) can be transferred to and stored in a distant long-lived mechanical resonator. The fidelity depends on the pulse parameters and the transmission loss. We further show that the magnonic and mechanical nodes can be prepared in a macroscopic entangled state. These demonstrate the quantum state transfer and entanglement distribution in such a novel quantum network of magnonic and mechanical nodes. Our work shows the possibility to connect two separate fields of optomagnonics and optomechanics, and to build a long-distance quantum network based on magnonic and mechanical systems.

  • Parity-symmetry-breaking quantum phase transition via parametric drive in a cavity magnonic system

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We study the parity-symmetry-breaking quantum phase transition (QPT) in a cavity magnonic system driven by a parametric field, where the magnons in a ferrimagnetic yttrium-iron-garnet sphere strongly couple to a microwave cavity. With appropriate parameters, this cavity magnonic system can exhibit a rich phase diagram, including the parity-symmetric phase, parity-symmetry-broken phase, and bistable phase. When increasing the drive strength beyond a critical threshold, the cavity magnonic system undergoes either a first- or second-order nonequilibrium QPT from the parity-symmetric phase with microscopic excitations to the parity-symmetry-broken phase with macroscopic excitations, depending on the parameters of the system. Our work provides an alternate way to engineer the QPT in a hybrid quantum system containing the spin ensemble in a ferri- or ferromagnetic material with strong exchange interactions.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心