您选择的条件: Zihan Tao
  • Bridging microcombs and silicon photonic engines for optoelectronics systems

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Microcombs have sparked a surge of applications over the last decade, ranging from optical communications to metrology. Despite their diverse deployment, most microcomb-based systems rely on a tremendous amount of bulk equipment to fulfill their desired functions, which is rather complicated, expensive and power-consuming. On the other hand, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here, we bridge these two technologies by using a power-efficient and operationally-simple AlGaAs on insulator microcomb source to drive CMOS SiPh engines. We present two important chip-scale photonic systems for optical data transmissions and microwave photonics respectively: The first microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude 4-level modulation scheme with 2 Tbps aggregate rate, and a highly reconfigurable microwave photonic filter with unprecedented integration level is constructed, using a time stretch scheme. Such synergy of microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems.

  • Sub-milliwatt, widely-tunable coherent microcomb generation with feedback-free operation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Microcombs are revolutionizing optoelectronics by providing parallelized, mutually coherent wavelength channels for time-frequency metrology and information processing. To implement this essential function in integrated photonic systems, it is desirable to drive microcombs directly with an on-chip laser in a simple and flexible way. However, two major difficulties are preventing this goal: 1) generating mode-locked comb states usually requires a significant amount of pump power and 2) the requirement to align laser and resonator frequency significantly complicates operation and limits the tunability of the comb lines. Here, we address these problems by using microresonators on an AlGaAs on-insulator platform to generate dark-pulse microcombs. This highly nonlinear platform dramatically relaxes fabrication requirements and leads to a record-low pump power of less than 1 mW for coherent comb generation. Dark-pulse microcombs facilitated by thermally-controlled avoided mode-crossings are accessed by direct DFB laser pumping. Without any feedback or control circuitries, the comb shows good coherence and stability. This approach also leads to an unprecedented wide chirping range of all the comb lines. Our work provides a route to realize power-efficient, simple and reconfigurable microcombs that can be seamlessly integrated with a wide range of photonic systems.

  • Fully on-chip microwave photonics system

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Microwave photonics (MWP), harnessing the tremendous bandwidth of light to generate, process and measure wideband microwave signals, are poised to spark a new revolution for the information and communication fields. Within the past decade, new opportunity for MWP has emerged driven by the advances of integrated photonics. However, despite significant progress made in terms of integration level, a fully on-chip MWP functional system comprising all the necessary photonic and electronic components, is yet to be demonstrated. Here, we break the status quo and provide a complete on-chip solution for MWP system, by exploiting hybrid integration of indium phosphide, silicon photonics and complementary metal-oxide-semiconductor (CMOS) electronics platforms. Applying this hybrid integration methodology, a fully chip-based MWP microwave instantaneous frequency measurement (IFM) system is experimentally demonstrated. The unprecedented integration level brings great promotion to the compactness, reliability, and performances of the overall MWP IFM system, including a wide frequency measurement range (2-34 GHz), ultralow estimation errors (10.85 MHz) and a fast response speed (0.3 ns). Furthermore, we deploy the chip-scale MWP IFM system into realistic application tasks, where diverse microwave signals with rapid-varying frequencies at X-band (8-12 GHz) are accurately identified in real-time. This demonstration marks a milestone for the development of integrated MWP, by providing the technology basis for the miniaturization and massive implementations of various MWP functional systems.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心