您选择的条件: Qiwen Zhan
  • Spin-orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Spin-orbital coupling and interaction as intrinsic light fields characteristics have been extensively studied. Previous studies involve the spin angular momentum (SAM) carried by circular polarization and orbital angular momentum (OAM) associated with a spiral phase wavefront within the beam cross section, where both the SAM and OAM are in parallel with the propagation direction. In this work, we study a new type of spin-orbital coupling between the longitudinal SAM and the transverse OAM carried by a spatiotemporal optical vortex (STOV) wavepacket under tight focusing condition. Intricate spatiotemporal phase singularity structures are formed when a circularly polarized STOV wavepacket is tightly focused by a high numerical aperture objective lens. For the transversely polarized components, phase singularity orientation can be significantly tilted away from the transverse direction towards the optical axis due to the coupling between longitudinal SAM and transverse OAM. The connection between the amount of rotation and the temporal width of the wavepacket is revealed. More interestingly, spatiotemporal phase singularity structure with a continuous evolution from longitudinal to transverse orientation through the wavepacket is observed for the longitudinally polarized component. These exotic spin-orbit coupling phenomena are expected to render new effects and functions when they are exploited in light matter interactions.

  • Photonic orbital angular momentum with controllable orientation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Vortices are whirling disturbances commonly found in nature ranging from tremendously small scales in Bose-Einstein condensates to cosmologically colossal scales in spiral galaxies. An optical vortex, generally associated with a spiral phase, can carry orbital angular momentum (OAM). The optical OAM can either be in the longitudinal direction if the spiral phase twists in the spatial domain or in the transverse direction if the phase rotates in the spatiotemporal domain. In this article, we demonstrate the intersection of spatiotemporal vortices and spatial vortices in a wave packet. As a result of this intersection, the wave packet hosts a tilted OAM that provides an additional degree of freedom to the applications that harness the OAM of photons.

  • Photonic toroidal vortex

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Toroidal vortices are whirling disturbances rotating about a ring-shaped core while advancing in the direction normal to the ring orifice. Toroidal vortices are commonly found in nature and being studied in a wide range of disciplines. Here we report the experimental observation of photonic toroidal vortex as a new solution to Maxwell's equations with the use of conformal mapping. The helical phase twists around a closed loop leading to an azimuthal local orbital angular momentum density. The preparation of such intriguing light field may offer insights of extending toroidal vortex to other disciplines and find important applications in light-matter interaction, optical manipulation, photonic symmetry and topology, and quantum information.

  • Towards optical toroidal wavepacket through tightly focusing of cylindrical vector two dimensional spatiotemporal optical vortex

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Spatiotemporal optical vortices (STOVs) carrying transverse orbital angular momentum (OAM) are of rapidly growing interest for the field of optics due to the new degree of freedom that can be exploited. In this paper, we propose cylindrical vector two dimensional STOVs (2D-STOVs) containing two orthogonal transverse OAMs in both x-t and y-t planes for the first time, and investigate the tightly focusing of such fields using the Richards-Wolf vectorial diffraction theory. Highly confined spatiotemporal wavepackets with polarization structure akin to toroidal topology is generated, whose spatiotemporal intensity distributions resemble the shape of Yo-Yo balls. Highly focused radially polarized 2D-STOVs will produce wavepackets towards transverse magnetic toroidal topology, while the focused azimuthally polarized 2D-STOVs will give rise to wavepackets towards transverse electric toroidal topology. The presented method may pave a way to experimentally generate the optical toroidal wavepackets in a controllable way, with potential applications in electron acceleration, photonics, energy, transient light-matter interaction, spectroscopy, quantum information processing, etc.

  • Integrated Optical Vortex Microcomb

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The explorations of physical degrees of freedom with infinite dimensionalities, such as orbital angular momentum and frequency of light, have profoundly reshaped the landscape of modern optics with representative photonic functional devices including optical vortex emitters and frequency combs. In nanophotonics, whisper gallery mode microresonators naturally support orbital angular momentum of light and have been demonstrated as on-chip emitters of monochromatic optical vortices. On the other hand, whisper gallery mode microresonators serve as a highly-efficient nonlinear optical platform for producing light at different frequencies - i.e., microcombs. Here, we interlace the optical vortices and microcombs by demonstrating an optical vortex comb on an III-V integrated nonlinear microresonator. The angular-grating-dressed nonlinear microring simultaneously emits up to 50 orbital angular momentum modes that are each spectrally addressed to the frequency components ((longitudinal whispering gallery modes) of the generated microcomb. We further show that the integrated vortex comb with varied orbital angular momenta distributed across different frequencies exhibits unprecedented advantages in the synthesis of spatio-temporal optical pulses with time-varying orbital angular momenta. This work may immediately boost the development of integrated nonlinear/quantum photonics for exploring fundamental optical physics and advancing photonic quantum technology.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心