您选择的条件: Qun Hao
  • Ultralow loss hollow-core negative curvature fibers with nested elliptical antiresonance tubes

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Hollow-core negative curvature fibers can confine light within air core and have small nonlinearity and dispersion and high damage threshold, thereby attracting a great deal of interest in the field of hollow core fibers. However, reducing the loss of hollow-core negative curvature fibers is a serious problem. On this basis, three new types of fibers with different nested tube structures are proposed in the near-infrared spectral regions and compared in detail with a previously proposed hollow-core negative curvature fiber. We used finite-element method for numerical simulation studies of their transmission loss, bending loss, and single-mode performance, and then the transmission performance of various structural fibers is compared. We found that the nested elliptical antiresonant fiber 1 has better transmission performance than that of the three other types of fibers in the spectral range of 0.72-1.6 {\mu}m. Results show that the transmission loss of the LP01 mode is as low as 6.45*10-6 dB/km at {\lambda} = 1.06 {\mu}m. To the best of our knowledge, the record low level of transmission loss of hollow-core antiresonant fibers with nested tube structures was created. In addition, the nested elliptical antiresonant fiber 1 has better bending resistance, and its bending loss was below 2.99*10-2 dB/km at 5 cm bending radius.

  • Robust Fourier ptychographic microscopy via a physics-based defocusing strategy for calibrating angle-varied LED illumination

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique for wide-field, high-resolution microscopy with a high space-bandwidth product. It integrates the concepts of synthetic aperture and phase retrieval to surpass the resolution limit imposed by the employed objective lens. In the FPM framework, the position of each sub-spectrum needs to be accurately known to ensure the success of the phase retrieval process. Different from the conventional methods with mechanical adjustment or data-driven optimization strategies, here we report a physics-based defocusing strategy for correcting large-scale positional deviation of the LED illumination in FPM. Based on a subpixel image registration process with a defocused object, we can directly infer the illumination parameters including the lateral offsets of the light source, the in-plane rotation angle of the LED array, and the distance between the sample and the LED board. The feasibility and effectiveness of our method are validated with both simulation study and experiments. We show that the reported strategy can obtain high-quality reconstruction of both the complex object and pupil even the LED array is randomly placed under the sample with both unknown lateral offsets and rotations. As such, it enables the development of robust FPM systems by reducing the requirement on fine mechanical adjustment and data-driven correction in the construction process.

  • Pose correction scheme for camera-scanning Fourier ptychography based on camera calibration and homography transform

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychography (FP), as a computational imaging method, is a powerful tool to improve imaging resolution. Camera-scanning Fourier ptychography extends the application of FP from micro to macro creatively. Due to the non-ideal scanning of the camera driven by the mechanical translation stage, the pose error of the camera occurs, greatly degrading the reconstruction quality, while a precise translation stage is expensive and not suitable for wide-range imaging. Here, to improve the imaging performance of camera-scanning Fourier ptychography, we propose a pose correction scheme based on camera calibration and homography transform approaches. The scheme realizes the accurate alignment of data set and location error correction in the frequency domain. Simulation and experimental results demonstrate this method can optimize the reconstruction results and realize high-quality imaging effectively. Combined with the feature recognition algorithm, the scheme provides the possibility for applying FP in remote sensing imaging and space imaging.

  • Robust full-pose-parameter estimation for the LED array in Fourier ptychographic microscopy

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychographic microscopy (FPM) can achieve quantitative phase imaging with a large space-bandwidth product by synthesizing a set of low-resolution intensity images captured under angularly varying illuminations. Determining accurate illumination angles is critical because the consistency between actual systematic parameters and those used in the recovery algorithm is essential for high-quality imaging. This paper presents a full-pose-parameter and physics-based method for calibrating illumination angles. Using a physics-based model constructed with general knowledge of the employed microscope and the brightfield-to-darkfield boundaries inside captured images, we can solve for the full-pose parameters of misplaced LED array, which consist of the distance between the sample and the LED array, two orthogonal lateral shifts, one in-plane rotation angle, and two tilt angles, to correct illumination angles precisely. The feasibility and effectiveness of the proposed method for recovering random or remarkable pose parameters have been demonstrated by both qualitative and quantitative experiments. Due to the completeness of the pose parameters, the clarity of the physical model, and the high robustness for arbitrary misalignments, our method can significantly facilitate the design, implementation, and application of concise and robust FPM platforms.

  • Complementary Fourier single-pixel imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Single-pixel imaging, with the advantages of a wide spectrum, beyond-visual-field imaging, and robustness to light scattering, has attracted increasing attention in recent years. Fourier single-pixel imaging (FSI) can reconstruct sharp images under sub-Nyquist sampling. However, the conventional FSI has difficulty with balancing the imaging quality and efficiency. To overcome this issue, we proposed a novel approach called complementary Fourier single-pixel imaging (CFSI) to reduce measurements while retaining its robustness. The complementary nature of Fourier patterns based on a four-step phase-shift algorithm is combined with the complementary nature of a digital micromirror device. CFSI only requires two phase-shifted patterns to obtain one Fourier spectral value. Four light intensity values are obtained by load the two patterns, and the spectral value is calculated through differential measurement, which has good robustness to noise. The proposed method is verified by simulations and experiments compared with FSI based on two-, three-, and four-step phase shift algorithms. CFSI performed better than the other methods under the condition that the best imaging quality of CFSI is not reached. The reported technique provides an alternative approach to realize real-time and high-quality imaging.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心