您选择的条件: Zhong Wang
  • Scale-free non-Hermitian skin effect in a boundary-dissipated spin chain

    分类: 光学 >> 量子光学 提交时间: 2023-02-25

    摘要: We study the open XXZ spin chain with a PT-symmetric non-Hermitian boundary field. We find an interaction-induced scale-free non-Hermitian skin effect by using the coordinate Bethe ansatz. The steady state and the ground state in the PT broken phase are constructed, and the formulas of their eigen-energies in the thermodynamic limit are obtained. The differences between the many-body scale-free states and the boundary string states are explored, and the transition between the two at isotropic point is investigated. We also discuss an experimental scheme to verify our results.

  • Amoeba formulation of the non-Hermitian skin effect in higher dimensions

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The non-Hermitian skin effect dramatically reshapes the energy bands of non-Hermitian systems, meaning that the usual Bloch band theory is fundamentally inadequate as their characterization. The non-Bloch band theory, in which the concept of Brillouin zone is generalized, has been widely applied to investigate non-Hermitian systems in one spatial dimension. However, its generalization to higher dimensions has been challenging. Here, we develop a formulation of the non-Hermitian skin effect and non-Bloch band theory in arbitrary spatial dimensions, which is based on a natural geometrical object known as the amoeba. Our theory provides a general framework for studying non-Hermitian bands beyond one dimension. Key quantities of non-Hermitian bands, including the energy spectrum, eigenstates profiles, and the generalized Brillouin zone, can be efficiently obtained from this approach.

  • Geometric Origin of Non-Bloch PT Symmetry Breaking

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The parity-time (PT) symmetry of a non-Hermitian Hamiltonian leads to real (complex) energy spectrum when the non-Hermiticity is below (above) a threshold. Recently, it has been demonstrated that the non-Hermitian skin effect generates a new type of PT symmetry, dubbed the non-Bloch PT symmetry, featuring unique properties such as high sensitivity to the boundary condition. Despite its relevance to a wide range of non-Hermitian lattice systems, a general theory is still lacking for this generic phenomenon even in one spatial dimension. Here, we uncover the geometric mechanism of non-Bloch PT symmetry and its breaking. We find that non-Bloch PT symmetry breaking occurs by the formation of cusps in the generalized Brillouin zone (GBZ). Based on this geometric understanding, we propose an exact formula that efficiently determines the breaking threshold. Finally, we predict a new type of spectral singularities associated with the symmetry breaking, dubbed non-Bloch van Hove singularities, whose physical mechanism fundamentally differs from their Hermitian counterparts.

  • Scale-free localization and PT symmetry breaking from local non-Hermiticity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We show that a local non-Hermitian perturbation in a Hermitian lattice system generically induces scale-free localization for the continuous-spectrum eigenstates. Furthermore, when the local non-Hermitian perturbation enjoys parity-time (PT) symmetry, the PT symmetry breaking of continuous spectrum is always accompanied by the emergence of scale-free localization. This type of PT symmetry breaking is highly sensitive to boundary conditions: The continuous spectrum of a periodic system undergoes a PT symmetry breaking as long as the non-Hermitian perturbation is strong enough; however, the counterpart under open boundary condition allows PT symmetry breaking only when the band structure satisfies certain condition that we unveil here. We also obtain the precise energy window in which the PT symmetry breaking is possible. Our results uncover a generic boundary-induced non-Hermitian phenomenon, which has unexpected interplay with PT symmetry.

  • Observation of non-Bloch parity-time symmetry and exceptional points

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Parity-time (PT)-symmetric Hamiltonians have widespread significance in non-Hermitian physics. A PT-symmetric Hamiltonian can exhibit distinct phases with either real or complex eigenspectrum, while the transition points in between, the so-called exceptional points, give rise to a host of critical behaviors that holds great promise for applications. For spatially periodic non-Hermitian systems, PT symmetries are commonly characterized and observed in line with the Bloch band theory, with exceptional points dwelling in the Brillouin zone. Here, in nonunitary quantum walks of single photons, we uncover a novel family of exceptional points beyond this common wisdom. These "non-Bloch exceptional points" originate from the accumulation of bulk eigenstates near boundaries, known as the non-Hermitian skin effect, and inhabit a generalized Brillouin zone. Our finding opens the avenue toward a generalized PT-symmetry framework, and reveals the intriguing interplay between PT symmetry and non-Hermitian skin effect.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心