您选择的条件: Shiqi Xia
  • Fractal-like photonic lattices and localized states arising from singular and nonsingular flatbands

    分类: 光学 >> 量子光学 提交时间: 2023-02-23

    摘要: We realize fractal-like photonic lattices using cw-laser-writing technique, thereby observe distinct compact localized states (CLSs) associated with different flatbands in the same lattice setting. Such triangle-shaped lattices, akin to the first generation Sierpinski lattices, possess a band structure where singular non-degenerate and nonsingular degenerate flatbands coexist. By proper phase modulation of an input excitation beam, we demonstrate experimentally not only the simplest CLSs but also their superimposition into other complex mode structures. Furthermore, we show by numerical simulation a dynamical oscillation of the flatband states due to beating of the CLSs that have different eigenenergies. These results may provide inspiration for exploring fundamental phenomena arising from fractal structure, flatband singularity, and real-space topology.

  • Topological phenomena demonstrated in photorefractive photonic lattices

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological photonics has attracted widespread research attention in the past decade due to its fundamental interest and unique manner in controlling light propagation for advanced applications. Paradigmatic approaches have been proposed to achieve topological phases including topological insulators in a variety of photonic systems. In particular, photonic lattices composed of evanescently coupled waveguide arrays have been employed conveniently to explore and investigate topological physics. In this article, we review our recent work on demonstration of topological phenomena in reconfigurable photonic lattices established by site-to-site cw-laser-writing or multiple-beam optical induction in photorefractive nonlinear crystals. We focus on the study of topological states realized in the celebrated one-dimensional Su-Schrieffer-Heeger lattices, including nonlinear topological edge states and gap solitons, nonlinearity-induced coupling to topological edge states, and nonlinear control of non-Hermitian topological states. In the two-dimensional case, we discuss two typical examples: universal mapping of momentum-space topological singularities through Dirac-like photonic lattices and realization of real-space nontrivial loop states in flatband photonic lattices. Our work illustrates how photorefractive materials can be employed conveniently to build up various synthetic photonic microstructures for topological studies, which may prove relevant and inspiring for exploration of fundamental phenomena in topological systems beyond photonics.

  • Realization of second-order photonic square-root topological insulators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Square-root higher-order topological insulators (HOTIs) are recently discovered new topological phases, with intriguing topological properties inherited from a parent lattice Hamiltonian. Different from conventional HOTIs, the square-root HOTIs typically manifest two paired non-zero energy corner states. In this work, we experimentally demonstrate the second-order square-root HOTIs in photonics for the first time to our knowledge, thereby unveiling such distinct corner states. The specific platform is a laser-written decorated honeycomb lattice (HCL), for which the squared Hamiltonian represents a direct sum of the underlying HCL and breathing Kagome lattice. The localized corner states residing in different bandgaps are observed with characteristic phase structures, in sharp contrast to discrete diffraction in a topologically trivial structure. Our work illustrates a scheme to study fundamental topological phenomena in systems with coexistence of spin-1/2 and spin-1 Dirac-Weyl fermions, and may bring about new possibilities in topology-driven photonic devices.

  • Photonic p-orbital higher-order topological insulators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals. Despite tremendous efforts in engineering synthetic cold-atom, electronic and photonic lattices to explore orbital physics, thus far high orbitals in an important class of materials, namely, the higher-order topological insulators (HOTIs), have not been realized. Here, we demonstrate p-orbital corner states in a photonic HOTI, unveiling their underlying topological invariant, symmetry protection, and nonlinearity-induced dynamical rotation. In a Kagome-type HOTI, we find that topological protection of the p-orbital corner states demands an orbital-hopping symmetry, in addition to the generalized chiral symmetry. Due to orbital hybridization, the nontrivial topology of the p-orbital HOTI is hidden if bulk polarization is used as the topological invariant, but well manifested by the generalized winding number. Our work opens a pathway for the exploration of intriguing orbital phenomena mediated by higher band topology applicable to a broad spectrum of systems.

  • Photonic realization of a generic type of graphene edge states exhibiting topological flat band

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Cutting a honeycomb lattice (HCL) can end up with three types of edges (zigzag, bearded and armchair), as is well known in the study of graphene edge states. Here we theoretically investigate and experimentally demonstrate a class of graphene edges, namely, the twig-shaped edges, using a photonic platform, thereby observing edge states distinctive from those observed before. Our main findings are: (i) the twig edge is a generic type of HCL edges complementary to the armchair edge, formed by choosing the right primitive cell rather than simple lattice cutting or Klein edge modification; (ii) the twig edge states form a complete flat band across the Brillouin zone with zero-energy degeneracy, characterized by nontrivial topological winding of the lattice Hamiltonian; (iii) the twig edge states can be elongated or compactly localized along the boundary, manifesting both flat band and topological features. Such new edge states are realized in a laser-written photonic graphene and well corroborated by numerical simulations. Our results may broaden the understanding of graphene edge states, bringing about new possibilities for wave localization in artificial Dirac-like materials.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心