您选择的条件: Gui-Lu Long
  • Global Correlation and Local Information Flows in Controllable Non-Markovian Open Quantum Dynamics

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In a fully-controllable experiment platform for studying non-Markovian open quantum dynamics, we show that the non-Markovianity could be investigated from the global and local aspects. By mixing random unitary dynamics, we demonstrate non-Markovian and Markovian open quantum dynamics. From the global point of view, by tuning the base frequency we demonstrate the transition from the Markovianity to the non-Markovianity as measured by the quantum mutual information (QMI). In a Markovian open quantum process, the QMI decays monotonically, while it may rise temporarily in a non-Markovian process. However, under some circumstances, it is not sufficient to globally investigate the non-Markovianity of the open quantum dynamics. As an essential supplement, we further utilize the quantum Fisher information (QFI) flow to locally characterize the non-Markovianity in different channels. We demonstrate that the QMI in combination with the QFI flow are capable of measuring the non-Markovianity for a multi-channel open quantum dynamics.

  • Tunable partial polarization beam splitter and optomechanically induced Faraday effect

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Polarization beam splitter (PBS) is a crucial photonic element to separately extract transverse-electric (TE) and transverse-magnetic (TM) polarizations from the propagating light fields. Here, we propose a concise, continuously tunable and all-optical partial PBS in the vector optomechanical system which contains two orthogonal polarized cavity modes with degenerate frequency. The results show that one can manipulate the polarization states of different output fields by tuning the polarization angle of the pumping field and the system function as partial PBS when the pump laser polarizes vertically or horizontally. As a significant application of the tunable PBS, we propose a scheme of implementing quantum walks in resonator arrays without the aid of other auxiliary systems. Furthermore, we investigate the optomechanically induced Faraday effect in the vector optomechanical system which enables arbitrary tailoring of the input lights and the behaviors of polarization angles of the output fields in the under couple, critical couple, and over couple regimes. Our findings prove the optomechanical system is a potential platform to manipulate the polarization states in multimode resonators and boost the process of applications related to polarization modulation.

  • Experimental demonstration of phase-matching and Sagnac effect in a millimeter-scale wedged resonator gyroscope

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The highly efficient coupling of light from conventional optical components to optical mode volumes lies in the heart of chip-based micro-devices, which is determined by the phase-matching between propagation constants of fiber taper and the whispering-gallery-mode (WGM) of the resonator. Optical gyroscopes, typically realized as fiber-optic gyroscopes and ring-laser gyroscopes, have been the mainstay in diverse applications such as positioning and inertial sensing. Here, the phase-matching is theoretically analyzed and experimentally verified. We observe Sagnac effect in a millimeter-scale wedged resonator gyroscope which has attracted considerable attention and been rapidly promoted in recent years. We demonstrate a bidirectional pump and probe scheme, which directly measures the frequency beat caused by the Sagnac effect. We establish the linear response between the detected beat frequency and the rotation velocity. The clockwise and counterclockwise rotation can also be distinguished according to the value of the frequency beat. The experimental results verify the feasibility of developing gyroscope in WGM resonator system and pave the way for future development.

  • Optomechanical compensatory cooling mechanism with exceptional points

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The ground state cooling of Brillouin scattering optomechanical system is limited by defects in practical sample. In this paper, we propose a new compensatory cooling mechanism for Brillouin scattering optomechanical system with exceptional points (EPs). By using the EPs both in optical and mechanical modes, the limited cooling process is compensated effectively. The dual-EPs system, which is discovered in this work for the first time, can be induced by two defects with specific relative angles and has function of not only actively manipulating the coupling strength of optical modes but also the Brillouin phonon modes. Our results provide new tools to manipulate the optomechanical interaction in multi-mode systems and open the possibility of quantum state transfer and quantum interface protocols based on phonon cooling in quantum applications.

  • Optomechanically induced transparency and directional amplification in a non-Hermitian optomechanical lattice

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Cavity optomechanics is important in both quantum information processing and basic physics research. In this paper, we propose an optomechanical lattice which manifests non-Hermitian physics . We first use the non-Bloch band theory to investigate the energy spectrum and transmission property of an optomechanical lattice. The generalized Brillouin zone of the system is calculated with the help of the resultant. And the periodical boundary condition (PBC) and open boundary condition energy spectrum are given, subsequently. By introducing probe laser on different sites we observed the directional amplification of the system. The direction of the amplification is analyzed combined with the non-Hermitian skin effect. The frequency that supports the amplification is analyzed by considering the PBC energy spectrum. By introducing probe laser on one site we investigate the onsite transmission property. Optomechanically induced transparency (OMIT) can be achieved in our system. By varying the parameters and size of the system, the OMIT peak can be effectively modulated or even turned into optomechanically induced amplification . Our system shows its potential as the function of a single-way signal filter. And our model can be extended to other non-Hermitian Bosonic model which may possess topological features and bipolar non-Hermitian skin effect.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心