• Self-referencing 3D characterization of ultrafast optical-vortex beams using tilted interference TERMITES technique

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Femtosecond light pulses carrying optical angular momentums (OAMs), possessing intriguing properties of helical phase fronts and ultrafast temporal profiles, enable many applications in nonlinear optics, strong-field physics and laser micro-machining. While generation of OAM-carrying ultrafast pulses and their interactions with matters have been intensively studied in experiments, three-dimensional characterization of ultrafast OAM-carrying light beams in spatio-temporal domain has, however, proved difficult to achieve. Conventional measurement schemes rely on the use of a reference pulsed light beam which needs to be well-characterized in its phase front and to have sufficient overlap and coherence with the beam under test, largely limiting practical applications of these schemes. Here we demonstrate a self-referencing set-up based on a tilted interferometer that can be used to measure complete spatio-temporal information of OAM-carrying femtosecond pulses with different topological charges. Through scanning one interferometer arm, the spectral phase over the pulse spatial profile can be obtained using the tilted interference signal, and the temporal envelope of the light field at one particular position around its phase singularity can be retrieved simultaneously, enabling three-dimensional beam reconstruction. This self-referencing technique, capable of measuring spatio-temporal ultrafast optical-vortex beams, may find many applications in fields of nonlinear optics and light-matter interactions.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心