• Multiple radio frequency measurement with an improved frequency resolution based on stimulated Brillouin scattering with a reduced gain bandwidth

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A photonic-assisted multiple radio frequency (RF) measurement approach based on stimulated Brillouin scattering (SBS) and frequency-to-time mapping with high accuracy and high-frequency resolution is reported. A two-tone signal is single-sideband (SSB) modulated on an optical carrier via a dual-parallel Mach-Zehnder modulator to construct one SBS gain and two SBS losses for SBS gain bandwidth reduction. The unknown RF signal is also SSB modulated on a carrier that has been modulated by a sweep signal, thus the unknown RF signal is converted to a sweep optical signal along with the sweep optical carrier. The bandwidth-reduced SBS gain spectrum is detected by the sweep optical signals at different specific time, mapping the RF frequencies to the time domain. An experiment is performed. RF frequencies from 0.3 to 7.6 GHz are simultaneously measured with a root mean square error of less than 1 MHz. In addition, the frequency resolution of the measurement can be much lower than 10 MHz, which is now the best result in the RF frequency measurement methods employing the SBS effect.

  • Photonics-enabled wavelet-like transform via nonlinear optical frequency sweeping and stimulated Brillouin scattering-based frequency-to-time mapping

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A photonics-enabled wavelet-like transform system, characterized by multi-resolution time-frequency analysis, is proposed based on a typical stimulated Brillouin scattering (SBS) pump-probe setup using an optical nonlinear frequency-sweep signal. In the pump path, a continuous-wave optical signal is injected into an SBS medium to generate an SBS gain. In the probe path, a periodic nonlinear frequency-sweep optical signal with a time-varying chirp rate is generated, which is then modulated at a Mach-Zehnder modulator (MZM) by the electrical signal under test (SUT). The optical signal from the MZM is selectively amplified by the SBS gain and converted back to the electrical domain using a low-speed photodetector, implementing the periodic SBS-based frequency-to-time mapping (FTTM). The frequency-domain information corresponding to different periods is mapped to the time domain via the FTTM in the form of low-speed electrical pulses, which is then spliced to analyze the time-frequency relationship of the SUT in real-time. The time-varying chirp rate in each sweep period makes the signals with different frequencies have different frequency resolutions in the FTTM process, which is very similar to the characteristics of the wavelet transform, so we call it wavelet-like transform. An experiment is carried out. Multi-resolution time-frequency analysis of a variety of RF signals is carried out in a 4-GHz bandwidth limited only by the equipment.

  • Photonics-based short-time Fourier transform without high-frequency electronic devices and equipment

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A photonics-based short-time Fourier transform (STFT) system is proposed and experimentally demonstrated based on stimulated Brillouin scattering (SBS) without using high-frequency electronic devices and equipment. The wavelength of a distributed feedback laser diode is periodically swept by using a low-speed periodic sawtooth/triangular driving current. The periodic frequency-sweep optical signal is modulated by the signal under test (SUT) and then injected into a section of SBS medium. The optical signal from another laser diode as the pump wave is reversely injected into the SBS medium. After simply detecting the forward transmission optical signals in a low-speed photodetector, the STFT of the SUT can be implemented. The system is characterized by the absence of any high-frequency electronic devices or equipment. An experiment is performed. The STFT of a variety of RF signals is carried out in a 4-GHz bandwidth. The dynamic frequency resolution is demonstrated to be around 60 MHz.

  • Time-frequency analysis of microwave signals based on stimulated Brillouin scattering

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A novel photonic approach to the time-frequency analysis of microwave signals is proposed based on the stimulated Brillouin scattering (SBS)-assisted frequency-to-time mapping (FTTM). Two types of time-frequency analysis links, namely parallel SBS link and time-division SBS link are proposed. The parallel SBS link can be utilized to perform real-time time-frequency analysis of microwave signal, which provides a promising solution for real-time time-frequency analysis, especially when it is combined with the photonic integration technique. A simulation is made to verify its feasibility by analyzing signals in multiple formats. The time-division SBS link has a simpler and reconfigurable structure, which can realize an ultra-high-resolution time-frequency analysis for periodic signals using the time segmentation and accumulation technique. An experiment is performed for the time-division SBS link. The multi-dimensional reconfigurability of the system is experimentally studied. An analysis bandwidth of 3.9 GHz, an analysis frequency up to 20 GHz, and a frequency resolution of 15 MHz are demonstrated, respectively.

  • Photonics-assisted microwave pulse detection and frequency measurement based on pulse replication and frequency-to-time mapping

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A photonics-assisted microwave pulse detection and frequency measurement scheme is proposed. The unknown microwave pulse is converted to the optical domain and then injected into a fiber loop for pulse replication, which makes it easier to identify the microwave pulse with large pulse repetition interval (PRI), whereas stimulated Brillouin scattering-based frequency-to-time mapping (FTTM) is utilized to measure the carrier frequency of the microwave pulse. A sweep optical carrier is generated and modulated by the unknown microwave pulse and a continuous-wave single-frequency reference, generating two different frequency sweep optical signals, which are combined and used as the probe wave to detect a fixed Brillouin gain spectrum. When the optical signal is detected in a photodetector, FTTM is realized and the frequency of the microwave pulse can be determined. An experiment is performed. For a fiber loop containing a 210-m fiber, pulse replication and FTTM of the pulses with a PRI of 20 {\mu}s and pulse width of 1.20, 1.00, 0.85, and 0.65 {\mu}s are realized. Under a certain sweep frequency chirp rate of 0.978 THz/s, the measurement errors are below {\pm}12 and {\pm}5 MHz by using one pair of pulses and multiple pairs of pulses, respectively. The influence of the sweep frequency chirp rate and pulse width on the measurement error has also been studied. To a certain extent, the faster the frequency sweep, the greater the frequency measurement error. For a specific sweep frequency chirp rate, the measurement error is almost unaffected by the pulse width to be measured.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心