分类: 光学 >> 量子光学 提交时间: 2023-02-19
摘要: We propose an optical localization and polarization microscopy scheme with sub-nanometer precision for an emitter (atom/molecule/quantum dot) based on its Lamb shift. It is revealed that the position-ultra-sensitive giant Lamb shift with three or more orders of magnitude larger than that in the free space, can be induced by higher-order plasmonic dark modes of a metal nanoparticle. More importantly, this giant Lamb shift can be ultra-sensitively observed from the optical scattering spectrum of the nanoparticle via scanning an emitter by a sub-nanometer step, and the orientation of the Lamb shift image can be utilized to identify the dipole polarization of the emitter. They enable the optical spectrum microscope technology with angstrom precision and polarization identification, which will bring about broad applications in many fields, such as physics, chemistry, medicine, life science and materials science.
分类: 光学 >> 量子光学 提交时间: 2023-02-19
摘要: Metalens research has made major advances in recent years. These advances rely on the simple design principle of arranging meta-atoms in regular arrays to create an arbitrary phase and polarization profile. Unfortunately, the concept of equally spaced meta-atoms reaches its limit for high deflection angles where the deflection efficiency decreases. The efficiency can be increased using nano-antennas with multiple elements, but their polarization sensitivity hinders their application in metalenses. Here, we show that by designing polarization-insensitive dimer nano-antennas and abandoning the principle of equally spaced unit cells, polarization-independent ultrahigh numerical aperture (NA=1.48) oil-immersion operation with an efficiency of 43% can be demonstrated. This represents a significant improvement on other polarization-independent designs at visible wavelength. We also use this single layer metalens to replace a conventional objective lens and demonstrate the confocal scanning microscopic imaging of a grating with a period of 300 nm at 532 nm operating wavelength. Overall, our results experimentally demonstrate a novel design concept that further improves metalens performance.