• Suppression of laser beam's polarization and intensity fluctuation via a Mach-Zehnder interferometer with proper feedback

    分类: 光学 >> 量子光学 提交时间: 2023-02-20

    摘要: Long ground-Rydberg coherence lifetime is interesting for implementing high-fidelity quantum logic gates, many-body physics, and other quantum information protocols. However, the potential well formed by a conventional far-off-resonance red-detuned optical-dipole trap that is attractive for ground-state cold atoms is usually repulsive for Rydberg atoms, which will result in the rapid loss of atoms and low repetition rate of the experimental sequence. Moreover, the coherence time will be sharply shortened due to the residual thermal motion of cold atoms. These issues can be addressed by a one-dimensional magic lattice trap, which can form a deeper potential trap than the traveling wave optical dipole trap when the output power is limited. In addition, these common techniques for atomic confinement generally have certain requirements for the polarization and intensity stability of the laser. Here, we demonstrated a method to suppress both the polarization drift and power fluctuation only based on the phase management of the Mach-Zehnder interferometer for a one-dimensional magic lattice trap. With the combination of three wave plates and the interferometer, we used the instrument to collect data in the time domain, analyzed the fluctuation of laser intensity, and calculated the noise power spectral density. We found that the total intensity fluctuation comprising laser power fluctuation and polarization drift was significantly suppressed, and the noise power spectral density after closed-loop locking with a typical bandwidth of 1-3000 Hz was significantly lower than that under the free running of the laser system. Typically, at 1000 Hz, the noise power spectral density after locking was about 10 dB lower than that under the free running of a master oscillator power amplifier system.The intensity-polarization control technique provides potential applications.

  • Nonreciprocal waveguide-QED for spinning cavities with multiple coupling points

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We investigate chiral emission and the single-photon scattering of spinning cavities coupled to a meandering waveguide at multiple coupling points. It is shown that nonreciprocal photon transmissions occur in the cavities-waveguide system, which stems from interference effects among different coupling points, and frequency shifts induced by the Sagnac effect. The nonlocal interference is akin to the mechanism in giant atoms. In the single-cavity setup, by optimizing the spinning velocity and number of coupling points, the chiral factor can approach 1, and the chiral direction can be freely switched. Moreover, destructive interference gives rise to the complete photon transmission in one direction over the whole optical frequency band, with no analogy in other quantum setups. In the multiple-cavity system, we also investigate the photon transport properties. The results indicate a directional information flow between different nodes. Our proposal provides a novel way to achieve quantum nonreciprocal devices, which can be applied in large-scale quantum chiral networks with optical waveguides.

  • Transverse mode selective laser with gain regulation by a digital micromirror device

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A transverse mode selective laser system with gain regulation by a digital micromirror device (DMD) is presented in this letter. The gain regulation in laser medium is adjusted by the switch of the patterns loaded on DMD. Structured pump beam patterns can be obtained after the reflection of the loaded patterns on DMD, and then it's defocused into a microchip laser medium by a short focal lens, so that the pump patterns can be transferred to the gain medium to regulate the gain distribution. Corresponding structured laser beams can be generated by this laser system. The laser beam pattern can be regulated easily and quickly, by switching the loaded patterns on DMD. Through this method, we show a simple and flexible laser system to generate on-demand laser beam patterns.

  • Self-healing and transformation characteristics of obstructed Hermite-Gaussian modes composed structured beams

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The self-healing property of laser beams is of great interest. And a laser beam with spatial structures is also widely concerned due to its important applications in lots of areas. We theoretically and experimentally investigate the self-healing and transformation characteristics of obstructed structured beams composed by incoherent or coherent superposition of multiple Hermite-Gaussian (HG) modes. We reveal that partially obstructed single HG mode can recover itself or transfer to a lower order in the far-field. When the obstacle retains one pair of edged bright spots of HG mode in each direction of its two symmetry axes, the beam structure information (number of knot lines) along each axis can be restored. Otherwise, it will be transferred to the corresponding low-order HG mode or multi interference fringes in the far-field, according to the interval of the two most edged remaining spots on each axis. It's proved that the above effect is induced by the diffraction and interference results of the partially retained light field. This principle is also applicable to multi-eigenmodes composed beams with special customized optical structures. Then the self-healing and transformation characteristics of the partially obstructed HG modes composed structured beams are investigated. It's found that the HG modes incoherently composed structured beams have a strong ability to recover themselves in the far-field after occlusion. These investigations can expand the applications of optical lattice structures of laser communication, atom optical capture, and optical imaging.

  • Hermite-Gaussian-mode coherently composed states and deep learning based free-space optical communication link

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In laser-based free-space optical communication, besides OAM beams, Hermite-Gaussian (HG) modes or HG-mode coherently composed states (HG-MCCS) can also be adopted as the information carrier to extend the channel capacity with the spatial pattern based encoding and decoding link. The light field of HG-MCCS is mainly determined by three independent parameters, including indexes of HG modes, relative initial phases between two eigenmodes, and scale coefficients of the eigenmodes, which can obtain a large number of effective coding modes at a low mode order. The beam intensity distributions of the HG-MCCSs have obvious distinguishable spatial characteristics and can keep propagation invariance, which are convenient to be decoded by the convolutional neural network (CNN) based image recognition method. We experimentally utilize HG-MCCS to realize a communication link including encoding, transmission under atmospheric turbulence (AT), and decoding based on CNN. With the index order of eigenmodes within six, 125 HG-MCCS are generated and used for information encoding, and the average recognition accuracy reached 99.5% for non-AT conditions. For the 125-level color images transmission, the error rate of the system is less than 1.8% even under the weak AT condition. Our work provides a useful basis for the future combination of dense data communication and artificial intelligence technology.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心