• Experimental optimal verification of three-dimensional entanglement on a silicon chip

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: High-dimensional entanglement is significant for the fundamental studies of quantum physics and offers unique advantages in various quantum information processing (QIP) tasks. Integrated quantum devices have recently emerged as a promising platform for creating, processing, and detecting complex high-dimensional entangled states. A crucial step towards practical quantum technologies is to verify that these devices work reliably with an optimal strategy. In this work, we experimentally implement an optimal quantum verification strategy on a three-dimensional maximally entangled state using local projective measurements on a silicon photonic chip. A 95% confidence is achieved from 1190 copies to verify the target quantum state. The obtained scaling of infidelity as a function of the number of copies is -0.5497+-0.0002, exceeding the standard quantum limit of -0.5 with 248 standard deviations. Our results indicate that quantum state verification could serve as an efficient tool for complex quantum measurement tasks.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心