• Incoherent Optoelectronic Differentiation with Optimized Multilayer Films

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier-based optical computing operations, such as spatial differentiation, have recently been realized in compact form factors using flat optics. Experimental demonstrations, however, have been limited to coherent light requiring laser illumination and leading to speckle noise and unwanted interference fringes. Here, we demonstrate the use of optimized multilayer films, combined with dual color image subtraction, to realize differentiation with unpolarized incoherent light. Global optimization is achieved by employing neural networks combined with the reconciled level set method to optimize the optical transfer functions of multilayer films at wavelengths of 532 nm and 633 nm. Spatial differentiation is then achieved by subtracting the normalized incoherent images at these two wavelengths. The optimized multilayer films are experimentally demonstrated to achieve incoherent differentiation with a numerical aperture up to 0.8 and a resolution of 6.2 {\mu}m. The use of multilayer films allows for lithography-free fabrication and is easily combined with existing imaging systems opening the door to applications in microscopy, machine vision and other image processing applications.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心