• High-responsivity, High-detectivity Photomultiplication Organic Photodetector Realized by a Metal-Insulator-Semiconductor Tunneling Junction

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Organic photodetectors (OPDs) possess bright prospects in applications of medical imaging and wearable electronics due to the advantages such as low cost, good biocompatibility, and good flexibility. Photomultiplication OPDs (PM-OPDs) enabled by the trap-assisted carrier tunneling injection effect exhibit external quantum efficiencies far greater than unity, thus the acquired responsivities are extremely high. However, the reported PM-OPDs with high responsivity performances are all accompanied by high dark currents due to the introduction of carrier traps, which inevitably results in inferior detectivities. In this work, we modify a P3HT:PCBM donor-rich PM-OPD by introducing an atomically thin Al2O3 interfacial layer through the ALD technique, obtaining a high responsivity of 8294 A/W and high detectivity of 6.76*10^14 Jones, simultaneously, both of which are among the highest reported for bulk heterojunction PM-OPDs. Ascribed to the introduction of the atomically thin Al2O3 layer, the metal-insulator-semiconductor (MIS) tunneling junction is formed, which brings forward a suppressed dark current along with an increased amounts of holes tunneling under forward bias. Meanwhile, the weak light detection limit of the modified PM-OPD within the linear response range reaches the level of nW/cm2. Based on the proposed PM-OPD, a proof-of-concept image sensor with 26*26 pixels is demonstrated, which can respond to both ultraviolet light and visible light. The PM-OPD based sensor arrays can find broad applications for medical imaging, wearable electronics, etc.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China