• Strong Superradiance of Coherently Coupled Magnetic Dipole Emitters Mediated by Whispering Gallery Modes of a Subwavelength All-Dielectric Cavity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The interaction of magnetic dipole (MD) emitters and common photonic cavities is usually weak, which is partially due to the low magnetic near field enhancements of the cavities. Here, we show that whispering gallery modes (WGMs) of a subwavelength dielectric cavity can not only greatly boost the emission rate of a MD emitter but also bring efficient couplings between coherent MD emitters. In a WGM cavity, the maximal emission rate ({\gamma}max) of a single emitter occurs at an antinode of the field pattern. The emission of the MD emitter can also be greatly affected by another coherent one depending on the magnetic field response of the WGM. The maximal contribution can also reach {\gamma}max. Notably, the cooperative emission rate of the coherent MD emitters does not decay with distance in the considered range due to the high-quality feature of a WGM. In contrast to the emission, the absorption of an emitter is hardly affected by the coherent couplings between emitters mediated by a WGM. The difference between the performances of emission and absorption is highly related to the excitation behaviors of WGMs. Our results are important for enhanced magnetic light-matter interactions.

  • Magnetic light amplification by stimulated emission of radiation in subwavelength systems of a dielectric cavity and magnetic quantum emitters

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We propose a magnetic laser in a subwavelength system consisting of a high-refractive-index dielectric cavity and an active medium formed by magnetic quantum emitters. Stimulated emissions of magnetic quantum emitters induced by their coherent interactions with quantized magnetic fields of a cavity are theoretically considered. The condition to archive such a magnetic laser is obtained. Numerical results show that magnetic lasers are feasible in some realistic systems, for example, a silicon disk of high-quality whispering gallery modes with embedded emitters. Furthermore, the competitions between the electric interaction and magnetic one in terms of their Purcell factors are also considered in some magnetic laser achievable systems. In a wavelength-scale silicon block of a high-order magnetic mode, the ratio of magnetic Purcell factor to the electric one can reach more than ~103 large. Our results open up ways to enhanced magnetic light-matter interactions.

  • Reconfigurable integrated full-dimensional optical lattice generator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical lattices with periodic potentials have attracted great attention in modern optics and photonics, enabling extensive applications in atomic manipulation, optical trapping, optical communications, imaging, sensing, etc. In the last decade, the generation of optical lattices has been widely investigated by various approaches such as multi-plane-wave interferometer, beam superposition, spatial light modulators, nanophotonic circuits, etc. However, all of the previous state-of-the-art works are restricted to only one or two dimensions of the light field, which cannot fulfill the increasing demand on complex light manipulation. Full-dimensional and dynamic control of the light field, including spatial amplitude, phase and polarization, is quite challenging and indispensable for the generation of sophisticated optical lattices. Here, we propose and demonstrate a reconfigurable integrated full-dimensional optical lattice generator, i.e. a photonic emitting array (PEA) enabling reconfigurable and full-dimensional manipulation of optical lattices, in which 4x4 photonic emitting units (PEUs) with 64 thermo-optic microheaters are densely integrated on a silicon chip. By engineering each PEU precisely with independent and complete control of optical properties of amplitude, phase and polarization, various optical vortex lattices, cylindrical vector beam lattices, and vector vortex beam lattices can be generated and reconfigured in the far field. The demonstrated integrated optical lattice generator paves the way for the miniaturization, full-dimensional control and enhanced flexibility of complex light manipulation.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心