• Tunability of Spin-Dependent Secondary Topological Interface States Induced in an Optical Complex Superlattice

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The past decade has witnessed a booming development of topological photonics, which revolutionizes the methodology for controlling the behavior of light. A gigantic achievement is to engineer robust confined modes localized at interfaces between topologically distinct regions, where the optical context can trigger exotic topological phenomena exclusive to photons. Here, we provide an experimentally flexible approach to engineering topologically induced interface states in the visible regime via a unique design of complex superlattice formed by connecting two component superlattices of distinguished topological phases. Assisted by the intrinsic pseudospin degree due to the splitting between TM and TE polarized modes, we attain a precise manipulation of the spin-dependent topological interface states that can manifest themselves straightforwardly through transmission spectra. More specifically, since these topological localized modes stem from the hybridization of artificial photonic orbitals that are of topological origin as well, they are deemed as a novel topological effect and thus named as the secondary topological interface states. Our work develops an innovative and productive strategy to tune topologically protected localized modes, based on which various applications such as selective local enhancement can be exploited.

  • Enhanced Directional Quantum Emission by Tunable Topological Doubly-Resonant Cavities

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: How to utilize topological microcavities to control quantum emission is one of the ongoing research topics in the optical community. In this work, we investigate the emission of quantum emitters in doubly-resonant topological Tamm microcavity, which can simultaneously achieve dual resonances at two arbitrary wavelengths according to the needs of practical application. To achieve the enhancement of quantum emission in such cavities, we have exploited the tunable doubly-resonant modes, in which one of resonant modes corresponds to the pump laser wavelength and the other one is located at the emission wavelength of quantum emitters. Both theoretical and experimental results demonstrate that the pump excitation and emission efficiencies of quantum emitters are greatly enhanced. The main physical mechanism can be explained by the doubly-resonant cavity temporal coupled-mode theory. Furthermore, we observe the faster emission rate and the higher efficiency of unidirectional quantum emission, which have promising applications in optical detection, sensing, filtering, and light-emitting devices.

  • Symmetry and topological classification of Floquet non-Hermitian systems

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Recent experimental advances in Floquet engineering and controlling dissipation in open systems have brought about unprecedented flexibility in tailoring novel phenomena without any static and Hermitian analogues. It can be epitomized by the various Floquet and non-Hermitian topological phases. Topological classifications of either static/Floquet Hermitian or static non-Hermitian systems based on the underlying symmetries have been well established in the past several years. However, a coherent understanding and classification of Floquet non-Hermitian (FNH) topological phases have not been achieved yet. Here we systematically classify FNH topological bands for 54-fold generalized Bernard-LeClair (GBL)symmetry classes and arbitrary spatial dimensions using $K$-theory. The classification distinguishes two different scenarios of the Floquet operator's spectrum gaps [dubbed as Floquet operator (FO) angle-gapped and FO angle-gapless]. The results culminate into two periodic tables, each containing 54-fold GBL symmetry classes. Our scheme reveals FNH topological phases without any static/Floquet Hermitian and static non-Hermitian counterparts. And our results naturally produce the periodic tables of Floquet Hermitian topological insulators and Floquet unitaries. The framework can also be applied to characterize the topological phases of bosonic systems. We provide concrete examples of one and two-dimensionalfermionic/bosonic systems. And we elucidate the meaning of the topological invariants and their physical consequences. Our paper lays the foundation for a comprehensive exploration of FNH topological bands. And it opens a broad avenue toward uncovering unique phenomena and functionalities emerging from the synthesis of periodic driving, non-Hermiticity, and band topology.

  • Observation of the acceleration of light in a tapered optical fiber

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: One of the most fascinating aspects of quantum fields in curved spacetime is the Unruh effect. The direct experimental detection of Unruh temperature has remained an elusive challenge up to now. Gradient optical waveguides manipulating the dispersion of photons are assumed to realize the great acceleration of effective particles, leading to a high effective Unruh temperature. However, experimentally achieving this optical waveguide has not yet been reported. In this work, we exploit a tapered fiber to simulate the accelerated motion of effective particles and obtain an effective Unruh temperature. When light propagating in a tapered fiber is affected by the external high refractive index medium, a leaky phenomenon akin to bremsstrahlung will be observed, and the pattern of leaky radiation is dependent on the acceleration of photons. During the experiments, different accelerations corresponding to different Unruh temperatures are achieved by controlling the shape of the tapered waveguide.

  • High fidelity generation of complex optical field through scattering medium with iterative wavefront optimization

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Light scattering within scattering media presents a substantial obstacle to optical transmission. A speckle pattern with random amplitude and phase distribution is observed when coherent light travels through strong scattering media. Fortunately, wavefront shaping has been successfully employed with a spatial light modulator to recover intensity targets after scattering media, such as a sharp focus point or specified two-dimensional patterns. There have, however, been few studies that attempted to separately manipulate the amplitude and phase of the focusing field. In this paper, we propose a feedback-based wavefront shaping method to generate complex optical fields through scattering medium. A reliable phase retrieval approach is introduced to provide the complex feedback information, i.e., the amplitude and phase of the focusing field. Accordingly, in order to modulate the speckle field into a desired complex structured optical field, a multi-objective genetic algorithm is used to find the best phase map. To demonstrate the proposed method's high performance, experimental tests have been carried out. High fidelity is demonstrated in the generation of diverse complex light fields, both in amplitude and phase. Our findings may facilitate the manipulation of light field through scattering medium, and are anticipated to further promote future applications such as optogenetics, vortex optical communication, and optical trapping through scattering media.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心