• Spin/momentum properties of the paraxial optical beams

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Spin angular momentum, an elementary dynamical property of classical electromagnetic fields, plays an important role in spin-orbit and light-matter interactions, especially in near-field optics. The research on optical spins has led to the discovery of phenomena such as optical spin-momentum locking and photonic topological quasiparticles, as well as applications in high-precision detection and nanometrology. Here, we investigate spin-momentum relations in paraxial optical systems and show that the optical spin angular momentum contains transverse and longitudinal spin components simultaneously. The transverse spin originates from inhomogeneities of field and governed by the vorticity of the kinetic momentum density, whereas the longitudinal spin parallel to the local canonical momentum is proportional to the polarization ellipticity of light. Moreover, the skyrmionlike spin textures arise from the optical transverse spin can be observed in paraxial beams, and their topologies are maintained free from the influence of the Gouy phase during propagation. Interestingly, the optical singularities, including both phase and polarization singularities, can also affect the spin-momentum properties significantly. Our findings describe the intrinsic spin-momentum properties in paraxial optical systems and apply in the analysis of the properties of spin-momentum in optical focusing, imaging, and scattering systems.

  • Intrinsic spin-momentum dynamics of surface electromagnetic waves in complex dispersive system

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Spin-momentum locking is an intrinsic property of surface electromagnetic fields and its study has led to the discovery of photonic spin lattices and diverse applications. Previously, dispersion was ignored in the spin-momentum locking, giving rise to abnormal phenomena contradictory to the physical realities. Here, we formulate four dispersive spin-momentum equations for surface waves, revealing universally that the transverse spin vector is locked with the momentum. The locking property obeys the right-hand rule in the dielectric but the left-hand rule in the dispersive metal/magnetic materials. In addition to the dispersion, the structural features can affect the spin-momentum locking significantly. Remarkably, an extraordinary longitudinal spin originating from the coupling polarization ellipticity is uncovered even for the purely polarized state. We further demonstrate the spin-momentum locking properties with diverse photonic topological lattices by engineering the rotating symmetry. The findings open up opportunities for designing robust nanodevices with practical importance in chiral quantum optics.

  • SOFFLFM: Super-resolution optical fluctuation Fourier light-field microscopy

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier light-field microscopy (FLFM) uses a micro-lens array (MLA) to segment the Fourier Plane of the microscopic objective lens to generate multiple two-dimensional perspective views, thereby reconstructing the three-dimensional(3D) structure of the sample using 3D deconvolution calculation without scanning. However, the resolution of FLFM is still limited by diffraction, and furthermore, dependent on the aperture division. In order to improve its resolution, a Super-resolution optical fluctuation Fourier light field microscopy (SOFFLFM) was proposed here, in which the Sofi method with ability of super-resolution was introduced into FLFM. SOFFLFM uses higher-order cumulants statistical analysis on an image sequence collected by FLFM, and then carries out 3D deconvolution calculation to reconstruct the 3D structure of the sample. Theoretical basis of SOFFLFM on improving resolution was explained and then verified with simulations. Simulation results demonstrated that SOFFLFM improved lateral and axial resolution by more than sqrt(2) and 2 times in the 2nd and 4th order accumulations, compared with that of FLFM.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心