• Scattering-assisted and logic-controllable WGM laser in liquid crystal micropillar

    分类: 光学 >> 量子光学 提交时间: 2023-02-22

    摘要: Whispering gallery mode (WGM) microcavities can efficiently store and manipulate light with strong light confinement and long photon lifetime, while coupling light into and from WGMs is intrinsically hindered by their unique feature of rotational symmetry. Here, a scattering-assisted liquid crystal (LC) micropillar WGM laser is proposed. WGM lasing at the surface of the micropillar is obviously enhanced by fluorescence scattering in the core of the micropillar. Besides, weak scattering of LC molecules also builds efficient coupling channels between the laser modes and the axial transmission modes of the micropillar-based waveguide, providing an all-in-one liquid WGM laser with functions of self-seeding and self-guiding. Furthermore, based on the hysteresis characteristics of the electrically anchored LC molecules under the interaction of thermal force, an erasable read-write liquid memory device is proposed, paving the way for the application of logic-controllable WGM lasers in optical storage and optical control.

  • Heralded entanglement distribution between two absorptive quantum memories

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories. These schemes suffer from the trade-off between multiplexing capacity and deterministic properties and hence hinder the development of efficient quantum repeaters. Quantum repeaters based on absorptive quantum memories can overcome such limitations because they separate the quantum memories and the quantum light sources. Here we present an experimental demonstration of heralded entanglement between absorptive quantum memories. We build two nodes separated by 3.5 metres, each containing a polarization-entangled photon-pair source and a solid-state quantum memory with bandwidth up to 1 gigahertz. A joint Bell-state measurement in the middle station heralds the successful distribution of maximally entangled states between the two quantum memories with a fidelity of 80.4 $\pm$ 2.2 per cent ($\pm$1 standard deviation). The quantum nodes and channels demonstrated here can serve as an elementary link of a quantum repeater. Moreover, the wideband absorptive quantum memories used in the nodes are compatible with deterministic entanglement sources and can simultaneously support multiplexing, which paves the way for the construction of practical solid-state quantum repeaters and high-speed quantum networks.

  • Simulating topological materials with photonic synthetic dimensions in cavities

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photons play essential roles in fundamental physics and practical technologies. They have become one of the attractive informaiton carriers for quantum computation and quantum simulation. Recently, various photonic degrees of freedom supported by optical resonant cavities form photonic synthetic dimensions, which contribute to all-optical platforms for simulating novel topological materials. The photonic discrete or continuous degrees of freedom are mapped to the lattices or momenta of the simulated topological matter, and the couplings between optical modes are equivalent to the interactions among quasi-particles. Mature optical modulations enable flexible engineering of the simulated Hamiltonian. Meanwhile, the resonant detection methods provide direct approaches to obtaining the corresponding energy band structures, particle distributions and dynamical evolutions. In this Review, we give an overview of the synthetic dimensions in optical cavities, including frequency, orbital angular momentum, time-multiplexed lattice, and independent parameters. Abundant higher-dimensional topological models have been demonstrated in lower dimensional synthetic systems. We further discuss the potential development of photonic synthetic dimensions in the future.

  • One-hour coherent optical storage in an atomic frequency comb memory

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photon loss in optical fibers prevents long-distance distribution of quantum information on the ground. Quantum repeater is proposed to overcome this problem, but the communication distance is still limited so far because of the system complexity of the quantum repeater scheme. Alternative solutions include transportable quantum memory and quantum-memory-equipped satellites, where long-lived optical quantum memories are the key components to realize global quantum communication. However, the longest storage time of the optical memories demonstrated so far is approximately 1 minute. Here, by employing a zero-first-order-Zeeman magnetic field and dynamical decoupling to protect the spin coherence in a solid, we demonstrate coherent storage of light in an atomic frequency comb memory over 1 hour, leading to a promising future for large-scale quantum communication based on long-lived solid-state quantum memories.

  • Deterministic relation between optical polarization and lattice symmetry revealed in ion-doped single microcrystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Rare-earth ions doped crystals are of great significance for micro-sensing and quantum information, whilst the ions in the crystals emit light with spontaneous partial polarization, which is, though believed to be originated from the crystal lattice structure, still lacking a deterministic explanation that can be tested with quantitative accuracy. We report the experimental evidence showing the profound physical relation between the polarization degree of light emitted by the doped ion and the lattice symmetry, by demonstrating, with unprecedented precision, that the lattice constant ratio c/a directly quantifies the macroscopic effective polar angle of the electric and magnetic dipoles, which essentially determines the linear polarization degree of the emission. Based on this discovery, we further propose a pure optical technology to identify the three-dimensional orientation of a rod-shaped single microcrystal using the polarization-resolved micro-spectroscopy. Our results, revealing the physical origin of light polarization in ion-doped crystals, open the way towards on-demand polarization control with crystallography, and provide a versatile platform for polarization-based microscale sensing in dynamical systems.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心