• Intrinsic Superflat Bands in General Twisted Bilayer Systems

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Twisted bilayer systems with discrete magic angles, such as twisted bilayer graphene featuring moir\'{e} superlattices, provide a versatile platform for exploring novel physical properties. Here, we discover a class of superflat bands in general twisted bilayer systems beyond the low-energy physics of magic-angle twisted counterparts. By considering continuous lattice dislocation, we obtain intrinsic localized states, which are spectrally isolated at lowest and highest energies and spatially centered around the AA stacked region, governed by the macroscopic effective energy potential well. Such localized states exhibit negligible inter-cell coupling and support the formation of superflat bands in a wide and continuous parameter space, which can be mimicked using a twisted bilayer nanophotonic system. Our finding suggests that general twisted bilayer systems can realize continuously tunable superflat bands and the corresponding localized states for various photonic, phononic and mechanical waves.

  • Directional Dipole Dice Enabled by Anisotropic Chirality

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Directional radiation and scattering play an essential role in light manipulation for various applications in integrated nanophotonics, antenna and metasurface designs, quantum optics, etc. The most elemental system with this property is the class of directional dipoles, including the circular dipole, Huygens dipole, and Janus dipole. A unified realization of all three dipole types and a mechanism to freely switch among them are previously unreported, yet highly desirable for developing compact and multifunctional directional sources. Here, we theoretically and experimentally demonstrate that the synergy of chirality and anisotropy can give rise to all three directional dipoles in one structure at the same frequency under linearly polarized plane wave excitations. This mechanism enables a simple helix particle to serve as a directional dipole dice (DDD), achieving selective manipulation of optical directionality via different "faces" of the particle. We employ three "faces" of the DDD to realize face-multiplexed routing of guided waves in three orthogonal directions with the directionality determined by spin, power flow, and reactive power, respectively. This construction of the complete directionality space can enable the unprecedented high-dimensional control of both near-field and far-field directionality with broad applications in photonic integrated circuits, quantum information processing, and subwavelength-resolution imaging.

  • Super-resolution multicolor fluorescence microscopy enabled by an apochromatic super-oscillatory lens with extended depth-of-focus

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Multicolor super-resolution imaging remains an intractable challenge for both far-field and near-field based super-resolution techniques. Planar super-oscillatory lens (SOL), a far-field subwavelength-focusing diffractive lens device, holds great potential for achieving sub-diffraction-limit imaging at multiple wavelengths. However, conventional SOL devices suffer from a numerical aperture (NA) related intrinsic tradeoff among the depth of focus (DoF), chromatic dispersion and focus spot size, being an essential characteristics of common diffractive optical elements. Typically, the limited DoF and significant chromatism associated with high NA can lead to unfavorable degradation of image quality although increasing NA imporves the resolution. Here, we apply a multi-objective genetic algorithm (GA) optimization approach to design an apochromatic binary-phase SOL that generates axially jointed multifoci concurrently having prolonged DoF, customized working distance (WD) and suppressed side-lobes yet minimized main-lobe size, optimizing the aforementioned NA-dependent tradeoff. Experimental implementation of this GA-optimized SOL demonstrates simultaneous focusing of blue, green and red light beams into an optical needle half of the incident wavelength in diameter at 428 um WD, resulting in an ultimate resolution better than one third of the incident wavelength in the lateral dimension. By integrating this apochromatic SOL device with a commercial fluorescence microscope, we employ the optical needle to perform, for the first time, three-dimensional super-resolution multicolor fluorescence imaging of the unseen fine structure of neurons at one go. The present study provides not only a practical route to far-field multicolor super-resolution imaging but also a viable approach for constructing imaging systems avoiding complex sample positioning and unfavorable photobleaching.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心