• Indoor optical fiber eavesdropping approach and its avoidance

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The optical fiber network has become a worldwide infrastructure. In addition to the basic functions in telecommunication, its sensing ability has attracted more and more attention. In this paper, we discuss the risk of household fiber being used for eavesdropping and demonstrate its performance in the lab. Using a 3-meter tail fiber in front of the household optical modem, voices of normal human speech can be eavesdropped by a laser interferometer and recovered 1.1 km away. The detection distance limit and system noise are analyzed quantitatively. We also give some practical ways to prevent eavesdropping through household fiber.

  • Ghost Panorama

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Computational ghost imaging or single-pixel imaging enables the image formation of an unknown scene using a lens-free photodetector. In this Letter, we present a computational panoramic ghost imaging system that can achieve the full-color panorama using a single-pixel photodetector, where a convex mirror performs the optical transformation of the engineered Hadamard-based circular illumination pattern from unidirectionally to omnidirectionally. To our best knowledge, it is the first time to propose the concept of ghost panorama and realize preliminary experimentations. It is foreseeable that ghost panorama will have more advantages in imaging and detection in many extreme conditions (e.g., scattering/turbulence, cryogenic temperatures, and unconventional spectra), as well as broad application prospects in the positioning of fast-moving targets and situation awareness for autonomous vehicles.

  • Wafer-level substrate-free low-stress silicon nitride platform for THz metadevices and monolithically integrated narrowband metamaterial absorbers

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The implementation of terahertz (THz) wafer-level metadevices is critical to advance the science for applications including (I) integrated focal plane array which can image for biology and (II) integrated narrowband absorbers for high spectral resolution THz spectroscopy. Substantial progress has been made in the development of THz metamaterials; however, a wafer-level low-stress THz metadevices platform remains a challenge. This paper experimentally demonstrates a substrate-free THz metadevices platform adopting engineered Si-rich and low-stress silicon nitride (SiNx) thin films, achieving an extensive THz transparency up to f = 2.5 THz. A new analytical model is first reported from the Lorentz model that can accurately predict spectral responses of metal insulator metal (MIM) metamaterial absorbers. The model is experimentally validated in the THz range and exploited for the first demonstration of a THz absorber, which exhibits performance approaching the predicted results. Our results show that the wafer-level SiNx platform will accelerate the development of large-scale, sophisticated substrate-free THz metadevices. The Lorentz model and its quadratic model will be a very practical method for designing THz metadevices.

  • Self-induced optical non-reciprocity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Non-reciprocal optical components are indispensable in optical applications, and their realization without any magnetic field arose increasing research interests in photonics. Exciting experimental progress has been achieved by either introducing spatial-temporal modulation of the optical medium or combining Kerr-type optical nonlinearity with spatial asymmetry in photonic structures. However, extra driving fields are required for the first approach, while the isolation of noise and the transmission of the signal cannot be simultaneously achieved for the other approach. Here, we experimentally demonstrate a new concept of nonlinear non-reciprocal susceptibility for optical media and realize the completely passive isolation of optical signals without any external bias field. The self-induced isolation by the input signal is demonstrated with an extremely high isolation ratio of 63.4 dB, a bandwidth of 2.1 GHz for 60 dB isolation, and a low insertion loss of around 1 dB. Furthermore, novel functional optical devices are realized, including polarization purification and non-reciprocal leverage. The demonstrated nonlinear non-reciprocity provides a versatile tool to control light and deepen our understanding of light-matter interactions, and enables applications ranging from topological photonics to unidirectional quantum information transfer in a network.

  • Nonlinear optical radiation of a lithium niobate microcavity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The nonlinear optical radiation of an integrated lithium niobate microcavity is demonstrated, which has been neglected in previous studies of nonlinear photonic devices. We find that the nonlinear coupling between confined optical modes on the chip and continuum modes in free space can be greatly enhanced on the platform of integrated microcavity, with feasible relaxation of the phase-matching condition. With an infrared pump laser, we observe the vertical radiation of second-harmonic wave at the visible band, which indicates a robust phase-matching-free chip-to-free-space frequency converter and also unveils an extra energy dissipation channel for integrated devices. Such an unexpected coherent nonlinear interaction between the free-space beam and the confined mode is also validated by the different frequency generation. Furthermore, based on the phase-matching-free nature of the nonlinear radiation, we build an integrated atomic gas sensor to characterize Rb isotopes with a single telecom laser. The unveiled mechanism of nonlinear optical radiation is universal for all dielectric photonic integrated devices, and provides a simple and robust chip-to-free-space as well as visible-to-telecom interface.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心