Submitted Date
Subjects
Authors
Institution
  • Amoeba formulation of the non-Hermitian skin effect in higher dimensions

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The non-Hermitian skin effect dramatically reshapes the energy bands of non-Hermitian systems, meaning that the usual Bloch band theory is fundamentally inadequate as their characterization. The non-Bloch band theory, in which the concept of Brillouin zone is generalized, has been widely applied to investigate non-Hermitian systems in one spatial dimension. However, its generalization to higher dimensions has been challenging. Here, we develop a formulation of the non-Hermitian skin effect and non-Bloch band theory in arbitrary spatial dimensions, which is based on a natural geometrical object known as the amoeba. Our theory provides a general framework for studying non-Hermitian bands beyond one dimension. Key quantities of non-Hermitian bands, including the energy spectrum, eigenstates profiles, and the generalized Brillouin zone, can be efficiently obtained from this approach.

  • Geometric Origin of Non-Bloch PT Symmetry Breaking

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The parity-time (PT) symmetry of a non-Hermitian Hamiltonian leads to real (complex) energy spectrum when the non-Hermiticity is below (above) a threshold. Recently, it has been demonstrated that the non-Hermitian skin effect generates a new type of PT symmetry, dubbed the non-Bloch PT symmetry, featuring unique properties such as high sensitivity to the boundary condition. Despite its relevance to a wide range of non-Hermitian lattice systems, a general theory is still lacking for this generic phenomenon even in one spatial dimension. Here, we uncover the geometric mechanism of non-Bloch PT symmetry and its breaking. We find that non-Bloch PT symmetry breaking occurs by the formation of cusps in the generalized Brillouin zone (GBZ). Based on this geometric understanding, we propose an exact formula that efficiently determines the breaking threshold. Finally, we predict a new type of spectral singularities associated with the symmetry breaking, dubbed non-Bloch van Hove singularities, whose physical mechanism fundamentally differs from their Hermitian counterparts.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China