您选择的条件: Danying Yu
  • Simulating graphene dynamics in one-dimensional modulated ring array with synthetic dimension

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A dynamically-modulated ring system with frequency as a synthetic dimension has been shown to be a powerful platform to do quantum simulation and explore novel optical phenomena. Here we propose synthetic honeycomb lattice in a one-dimensional ring array under dynamic modulations, with the extra dimension being the frequency of light. Such system is highly re-configurable with modulation. Various physical phenomena associated with graphene including Klein tunneling, valley-dependent edge states, effective magnetic field, as well as valley-dependent Lorentz force can be simulated in this lattice, which exhibits important potentials for manipulating photons in different ways. Our work unveils a new platform for constructing the honeycomb lattice in a synthetic space, which holds complex functionalities and could be important for optical signal processing as well as quantum computing.

  • Single Pulse Manipulations in Synthetic Time-frequency Space

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Synthetic dimensions in photonic structures provide unique opportunities for actively manipulating light in multiple degrees of freedom. Here, we theoretically explore a dispersive waveguide under the dynamic phase modulation that supports single pulse manipulations in the synthetic (2+1) dimensions. Compared with the counterpart of the conventional (2+1) space-time, we explore temporal diffraction and frequency conversion in a synthetic time-frequency space while the pulse evolves along the spatial dimension. By introducing the effective gauge potential well for photons in the synthetic time-frequency space with the control of the modulation phase, we show that a rich set of pulse propagation behaviors can be achieved, including confined pulse propagation, fast/slow light, and pulse compression. With the additional nonlinear oscillation subject to the effective force along the frequency axis of light, we provide an exotic approach for actively manipulating the single pulse in both temporal and spectral domains, which shows the great promise for applications of the pulse processing and optical communications in integrated photonics.

  • Concentrated subradiant modes in one-dimensional atomic array coupled with chiral waveguides

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Non-Hermitian systems have recently attracted broad interest and exhibited intriguing physical phenomena, in which the non-Hermitian skin effect is one of the most remarkable quantum phenomena desiring detailed investigations and has been widely studied in various fermionic and bosonic systems. Here we propose a non-Hermitian atom-waveguide system composed of a tilted one-dimensional atomic array coupled with two identical waveguides with opposite chiralities. Such system creates an effective lattice model including nonreciprocal long-range hoppings through the chiral-waveguide photon-mediated interactions. We find the excitation of the collective atomic states concentrates in the middle interface, pointing towards the non-Hermitian skin effect associated with subradiant modes, while, on the contrary, superradiant modes exhibit extended features. Simulation results present subradiant funneling effect, with robustness against small atomic position disorders. Our work underpins the fundamental comprehension towards the non-Hermitian skin effect in open quantum systems and also provide prospective paths to study non-Hermitian systems in the area of quantum optics.

  • Quasi-edge states and topological Bloch oscillation in the synthetic space

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In physics, synthetic dimensions trigger great interest to manipulate light in different ways, while in technology, lithium niobate shows important capability towards on-chip applications. Here, based on the state-of-art technology, we propose and study a theoretical model of dynamically-modulated waveguide arrays with the Su-Schrieffer-Heeger configuration in the spatial dimension. The propagation of light through the one-dimensional waveguide arrays mimics time evolution of field in a synthetic two-dimensional lattice including the frequency dimension. By adding the effective gauge potential, we find quasi-edge state that the intensity distribution manifests not at the boundary as the traditional edge state, which leads to an exotic topologically protected one-way transmission along adjacent boundary. Furthermore, a cosine-shape isolated band exhibits, supporting the topological Bloch oscillation in the frequency dimension under the effective constant force, which is localized at the spatial boundary and shows the topological feature. Our work therefore points out further capability of light transmission under topological protections in both spatial and spectral regimes, and provides future on-chip applications in the lithium niobate platform.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心