Your conditions: Jie Li
  • Entanglement Emerges from Dissipation-Structured Quantum Self-Organization

    Subjects: Optics >> Quantum optics submitted time 2023-02-20

    Abstract: Entanglement is a holistic property of multipartite quantum systems, which is accompanied by the establishment of nonclassical correlations between subsystems. Most entanglement mechanisms can be described by a coherent interaction Hamiltonian, and entanglement develops over time. In other words, the generation of entanglement has a time arrow. Dissipative structure theory directs the evolving time arrow of a non-equilibrium system. By dissipating energy to the environment, the system establishes order out of randomness. This is also referred to as self-organization. Here, we explore a new mechanism to create entanglement, utilizing the wisdom of dissipative structure theory in quantum systems. The entanglement between subsystems can emerge via the dissipation-structured correlation. This method requires a non-equilibrium initial state and cooperative dissipation, which can be implemented in a variety of waveguide-coupled quantum systems.

  • Squeezing Microwaves by Magnetostriction

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Squeezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical nonlinear processes. Here, we show how a nonlinear magnetostrictive interaction in a ferrimagnet in cavity magnomechanics can be used to reduce quantum noise of the electromagnetic field. We show optimal parameter regimes where a substantial and stationary squeezing of the microwave output field can be achieved. The scheme can be realized within the reach of current technology in cavity electromagnonics and magnomechanics. Our work provides a new and practicable approach for producing squeezed vacuum states of electromagnetic fields, and may find promising applications in quantum information processing and quantum metrology.

  • Entangling ferrimagnetic magnons with an atomic ensemble via opto-magnomechanics

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: We show how to prepare macroscopic entanglement between an atomic ensemble and a large number of magnons in a ferrimagnetic YIG crystal. Specifically, we adopt an opto-magnomechanical configuration where the magnetostriction-induced magnomechanical displacement couples to an optical cavity via radiation pressure, and the latter further couples to an ensemble of two-level atoms that are placed inside the cavity. We show that by properly driving the cavity and magnon modes, optomechanical entanglement is created which is further distributed to the atomic and magnonic systems, yielding stationary entanglement between atoms and magnons. The atom-magnon entanglement is a result of the combined effect of opto- and magnomechanical cooling and optomechanical parametric down-conversion interactions. A competition mechanism between two mechanical cooling channels is revealed. Our results indicate that the hybrid opto-magnomechanical system may become a promising system for preparing macroscopic quantum states involving magnons, photons, phonons and atoms.

  • Ground-state cooling of a massive mechanical oscillator by feedback in cavity magnomechanics

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Cooling the motion of a massive mechanical oscillator into its quantum ground state plays an essential role in observing macroscopic quantum effects in mechanical systems. Here we propose a measurement-based feedback cooling protocol in cavity magnomechanics that is able to cool the mechanical vibration mode of a macroscopic ferromagnet into its ground state. The mechanical mode couples to a magnon mode via a dispersive magnetostrictive interaction, and the latter further couples to a microwave cavity mode via the magnetic-dipole interaction. A feedback loop is introduced by measuring the amplitude of the microwave cavity output field and applying a force onto the mechanical oscillator that is proportional to the amplitude fluctuation of the output field. We show that by properly designing the feedback gain, the mechanical damping rate can be significantly enhanced while the mechanical frequency remains unaffected. Consequently, the vibration mode can be cooled into its quantum ground state in the unresolved-sideband regime at cryogenic temperatures. The protocol is designed for cavity magnomechanical systems using ferromagnetic materials which possess strong magnetostriction along with large magnon dissipation.

  • Optical sensing of magnons via the magnetoelastic displacement

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: We show how to measure a steady-state magnon population in a magnetostatic mode of a ferromagnet or ferrimagnet, such as yttrium iron garnet. We adopt an optomechanical approach and utilize the magnetoelasticity of the ferromagnet. The magnetostrictive force dispersively couples magnons to the deformation displacement of the ferromagnet, which is proportional to the magnon population. By further coupling the mechanical displacement to an optical cavity that is resonantly driven by a weak laser, the magnetostrictively induced displacement can be sensed by measuring the phase quadrature of the optical field. The phase shows an excellent linear dependence on the magnon population for a not very large population, and can thus be used as a `magnometer' to measure the magnon population. We further study the effect of thermal noises, and find a high signal-to-noise ratio even at room temperature. At cryogenic temperatures, the resolution of magnon excitation numbers is essentially limited by the vacuum fluctuations of the phase, which can be significantly improved by using a squeezed light.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China