您选择的条件: Xing Lin
  • EEG Opto-processor: epileptic seizure detection using diffractive photonic computing units

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Electroencephalography (EEG) analysis extracts critical information from brain signals, which has provided fundamental support for various applications, including brain-disease diagnosis and brain-computer interface. However, the real-time processing of large-scale EEG signals at high energy efficiency has placed great challenges for electronic processors on edge computing devices. Here, we propose the EEG opto-processor based on diffractive photonic computing units (DPUs) to effectively process the extracranial and intracranial EEG signals and perform epileptic seizure detection. The signals of EEG channels within a second-time window are optically encoded as inputs to the constructed diffractive neural networks for classification, which monitors the brain state to determine whether it's the symptom of an epileptic seizure or not. We developed both the free-space and integrated DPUs as edge computing systems and demonstrated their applications for real-time epileptic seizure detection with the benchmark datasets, i.e., the CHB-MIT extracranial EEG dataset and Epilepsy-iEEG-Multicenter intracranial EEG dataset, at high computing performance. Along with the channel selection mechanism, both the numerical evaluations and experimental results validated the sufficient high classification accuracies of the proposed opto-processors for supervising the clinical diagnosis. Our work opens up a new research direction of utilizing photonic computing techniques for processing large-scale EEG signals in promoting its broader applications.

  • All-optical graph representation learning using integrated diffractive photonic computing units

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photonic neural networks perform brain-inspired computations using photons instead of electrons that can achieve substantially improved computing performance. However, existing architectures can only handle data with regular structures, e.g., images or videos, but fail to generalize to graph-structured data beyond Euclidean space, e.g., social networks or document co-citation networks. Here, we propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN), based on the integrated diffractive photonic computing units (DPUs) to address this limitation. Specifically, DGNN optically encodes node attributes into strip optical waveguides, which are transformed by DPUs and aggregated by on-chip optical couplers to extract their feature representations. Each DPU comprises successive passive layers of metalines to modulate the electromagnetic optical field via diffraction, where the metaline structures are learnable parameters shared across graph nodes. DGNN captures complex dependencies among the node neighborhoods and eliminates the nonlinear transition functions during the light-speed optical message passing over graph structures. We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance. Our work opens up a new direction for designing application-specific integrated photonic circuits for high-efficiency processing of large-scale graph data structures using deep learning.

  • Coherent control of a high-orbital hole in a semiconductor quantum dot with near-unity fidelity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Coherently driven semiconductor quantum dots are one of the most promising platforms for non-classical light sources and quantum logic gates which form the foundation of photonic quantum technologies. However, to date, coherent manipulation of quantum dots is limited mainly to their lowest orbital states. Ultrafast coherent control of high-orbital states is obstructed by the demand for tunable terahertz pulses. To break this constraint, we demonstrate an all-optical method to control high-orbital states of a hole via stimulated Auger process. The coherent nature of the Auger process is revealed by Rabi oscillation and Ramsey interference with a fidelity of 95.8%. Harnessing this coherence further enables the investigation of single-hole relaxation mechanism. A surprisingly long relaxation time (156(2) ps) is observed and explained by phonon bottleneck effect. Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters and developing new types of orbital-based quantum photonic devices.

  • Optical multi-task learning using multi-wavelength diffractive deep neural networks

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photonic neural networks are brain-inspired information processing technology using photons instead of electrons to perform artificial intelligence (AI) tasks. However, existing architectures are designed for a single task but fail to multiplex different tasks in parallel within a single monolithic system due to the task competition that deteriorates the model performance. This paper proposes a novel optical multi-task learning system by designing multi-wavelength diffractive deep neural networks (D2NNs) with the joint optimization method. By encoding multi-task inputs into multi-wavelength channels, the system can increase the computing throughput and significantly alle-viate the competition to perform multiple tasks in parallel with high accuracy. We design the two-task and four-task D2NNs with two and four spectral channels, respectively, for classifying different inputs from MNIST, FMNIST, KMNIST, and EMNIST databases. The numerical evaluations demonstrate that, under the same network size, mul-ti-wavelength D2NNs achieve significantly higher classification accuracies for multi-task learning than single-wavelength D2NNs. Furthermore, by increasing the network size, the multi-wavelength D2NNs for simultaneously performing multiple tasks achieve comparable classification accuracies with respect to the individual training of multiple single-wavelength D2NNs to perform tasks separately. Our work paves the way for developing the wave-length-division multiplexing technology to achieve high-throughput neuromorphic photonic computing and more general AI systems to perform multiple tasks in parallel.

  • Dual adaptive training of photonic neural networks

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photonic neural network (PNN) is a remarkable analog artificial intelligence (AI) accelerator that computes with photons instead of electrons to feature low latency, high energy efficiency, and high parallelism. However, the existing training approaches cannot address the extensive accumulation of systematic errors in large-scale PNNs, resulting in a significant decrease in model performance in physical systems. Here, we propose dual adaptive training (DAT) that allows the PNN model to adapt to substantial systematic errors and preserves its performance during the deployment. By introducing the systematic error prediction networks with task-similarity joint optimization, DAT achieves the high similarity mapping between the PNN numerical models and physical systems and high-accurate gradient calculations during the dual backpropagation training. We validated the effectiveness of DAT by using diffractive PNNs and interference-based PNNs on image classification tasks. DAT successfully trained large-scale PNNs under major systematic errors and preserved the model classification accuracies comparable to error-free systems. The results further demonstrated its superior performance over the state-of-the-art in situ training approaches. DAT provides critical support for constructing large-scale PNNs to achieve advanced architectures and can be generalized to other types of AI systems with analog computing errors.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心