您选择的条件: Xiaoxiong Wu
  • Concentrated subradiant modes in one-dimensional atomic array coupled with chiral waveguides

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Non-Hermitian systems have recently attracted broad interest and exhibited intriguing physical phenomena, in which the non-Hermitian skin effect is one of the most remarkable quantum phenomena desiring detailed investigations and has been widely studied in various fermionic and bosonic systems. Here we propose a non-Hermitian atom-waveguide system composed of a tilted one-dimensional atomic array coupled with two identical waveguides with opposite chiralities. Such system creates an effective lattice model including nonreciprocal long-range hoppings through the chiral-waveguide photon-mediated interactions. We find the excitation of the collective atomic states concentrates in the middle interface, pointing towards the non-Hermitian skin effect associated with subradiant modes, while, on the contrary, superradiant modes exhibit extended features. Simulation results present subradiant funneling effect, with robustness against small atomic position disorders. Our work underpins the fundamental comprehension towards the non-Hermitian skin effect in open quantum systems and also provide prospective paths to study non-Hermitian systems in the area of quantum optics.

  • Quasi-edge states and topological Bloch oscillation in the synthetic space

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In physics, synthetic dimensions trigger great interest to manipulate light in different ways, while in technology, lithium niobate shows important capability towards on-chip applications. Here, based on the state-of-art technology, we propose and study a theoretical model of dynamically-modulated waveguide arrays with the Su-Schrieffer-Heeger configuration in the spatial dimension. The propagation of light through the one-dimensional waveguide arrays mimics time evolution of field in a synthetic two-dimensional lattice including the frequency dimension. By adding the effective gauge potential, we find quasi-edge state that the intensity distribution manifests not at the boundary as the traditional edge state, which leads to an exotic topologically protected one-way transmission along adjacent boundary. Furthermore, a cosine-shape isolated band exhibits, supporting the topological Bloch oscillation in the frequency dimension under the effective constant force, which is localized at the spatial boundary and shows the topological feature. Our work therefore points out further capability of light transmission under topological protections in both spatial and spectral regimes, and provides future on-chip applications in the lithium niobate platform.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心