您选择的条件: Huan Li
  • Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A highly efficient on-chip acousto-optic modulator, as a key component, occupies an exceptional position in microwave-to-optical conversion. Homogeneous thin-film lithium niobate is preferentially employed to build the suspended configuration forming the acoustic resonant cavity to improve the modulation efficiency of the device. However, the limited cavity length and complex fabrication recipe of the suspended prototype restrain further breakthrough in the modulation efficiency and impose challenges for waveguide fabrication. In this work, based on a nonsuspended thin-film lithium niobate-chalcogenide glass hybrid Mach-Zehnder interferometer waveguide platform, we propose and demonstrate a built-in push-pull acousto-optic modulator with a half-wave-voltage-length product as low as 0.03 V cm, presenting a modulation efficiency comparable to that of the state-of-the-art suspended counterpart. Based on the advantage of low power consumption, a microwave modulation link is demonstrated using our developed built-in push-pull acousto-optic modulator. The nontrivial acousto-optic modulation performance benefits from the superior photoelastic property of the chalcogenide membrane and the completely bidirectional participation of the antisymmetric Rayleigh surface acoustic wave mode excited by the impedance-matched interdigital transducer, overcoming the issue of amplitude differences of surface acoustic waves applied to the Mach-Zehnder interferometer two arms in traditional push-pull acousto-optic modulators.

  • Towards calibration-free Mach-Zehnder switches on silicon

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Silicon photonic Mach-Zehnder switches (MZSs) have been extensively investigated as a promising candidate for practical optical interconnects. However, conventional 2{\times}2 MZSs are usually prone to the size variations of the arm waveguides due to imperfect fabrication, resulting in considerable random phase imbalance between the two arms, thereby imposing significant challenges for further scaling up NN MZSs. Here we propose a novel design towards calibration-free 2{\times}2 and N{\times}N MZSs, employing optimally widened arm waveguides, enabled by novel compact tapered Euler S-bends with incorporated mode filters. With standard 180-nm CMOS foundry processes, more than thirty 2{\times}2 MZSs and one 4{\times}4 Benes MZS with the new design are fabricated and characterized. Compared with their conventional counterparts with 0.45-{\mu}m-wide arm waveguides, the present 2{\times}2 MZSs exhibit ~370-fold reduction in the random phase imbalance. The measured extinction ratios of the present 2{\times}2 and 4{\times}4 MZSs operating in the all-cross state are ~30 dB and ~20 dB across the wavelength range of ~60 nm, respectively, even without any calibrations. This work paves the way towards calibration-free large-scale N{\times}N silicon photonic MZSs.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心