您选择的条件: Liang Hu
  • Robust optical frequency transfer in a noisy urban fiber network

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical fibers have been recognized as one of the most promising host material for high phase coherence optical frequency transfer over thousands of kilometers. In the pioneering work, the active phase noise cancellation (ANC) technique has been widely used for suppressing the fiber phase noise introduced by the environmental perturbations, in which an ideal phase detector with high resolution and unlimited detection range is needed to extract the fiber phase noise, in particular for noisy fiber links. We demonstrate the passive phase noise cancellation (PNC) technique without the need of phase detector could be preferable for noisy fiber links. To avoid the effect of the radio frequency (RF) from the time base at the local site in the conventional active or passive phase noise cancellation techniques, here we introduce a fiber-pigtailed acousto-optic modulator (AOM) with two diffraction order outputs (0 and +1 order) with properly allocating the AOM-driving frequencies allowing to cancel the time base effect. Using this technique, we demonstrate transfer of coherent light through a 260 km noisy urban fiber link. The results show the effect of the RF reference can be successfully removed. After being passively compensated, {we demonstrate a fractional frequency instability of $4.9\times10^{-14}$ at the integration time of 1 s and scales down to $10^{-20}$ level at 10,000 s in terms of modified Allan deviation over the 260 km noisy urban fiber link}. The frequency uncertainty of the retrieved light after transferring through this noise-compensated fiber link relative to that of the input light achieves $(0.41\pm4.7)\times10^{-18}$. The proposed technique opens a way to a broad distribution of an ultrastable frequency reference with high coherence without any effects coming from the RF reference and enables a wide range of applications beyond metrology over fiber networks.

  • Branching optical frequency transfer with enhanced post automatic phase noise cancellation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We present a technique for coherence transfer of laser light through a branching fiber link, where the optical phase noise induced by environmental perturbations via the fiber link is passively compensated by remote users without the requirements of any active servo components. At each remote site, an acousto-optic modulator (AOM) is simultaneously taken as a frequency distinguisher for distinguishing its unique frequency from other sites' and as an optical actuator for compensating the phase noise coming from the optical fiber. With this configuration, we incorporate a long outside loop path consisting of a fiber-pigtailed AOM into the loop, enabling the significant reduction of the outside loop phase noise in the passive way. To further address the residual out-of-loop phase noise coming from the interferometer and the two-way optical frequency comparison setup, we design a low-noise active temperature stabilization system. Measurements with a back-to-back system show that the stability in our stabilization system is $2\times10^{-16}$ at 1 s, reaching $2\times10^{-20}$ after 10,000 s. Adopting these techniques, we demonstrate transfer of a laser light through a branching fiber network with 50 km and 145 km two fiber links. After being compensated for the 145 km fiber link, the relative frequency instability is $3.4\times10^{-15}$ at the 1 s averaging time and scales down to $3.7\times10^{-19}$ at the 10,000 s averaging time. This proposed technique is suitable for the simultaneous transfer of an optical signal to a number of independent users within a local area.

  • Multiple-access relay stations for long-haul fiber-optic radio frequency transfer

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report on the realization of a long-haul radio frequency (RF) transfer scheme by using multiple-access relay stations (MARSs). The proposed scheme with independent link noise compensation for each fiber sub-link effectively solves the limitation of compensation bandwidth for long-haul transfer. The MARS can have the capability to share the same modulated optical signal for the front and rear fiber sub-links, simplifying the configuration at the repeater station and enabling the transfer system to have the multiple-access capability. At the same time, we for the first time theoretically model the effect of the MARS position on the fractional frequency instability of the fiber-optic RF transfer, demonstrating that the MARS position has little effect on system's performance when the ratio of the front and rear fiber sub-links is around $1:1$. We experimentally demonstrate a 1 GHz signal transfer by using one MARS connecting 260 and 280 km fiber links with the fractional frequency instabilities of less than $5.9\times10^{-14}$ at 1 s and $8.5\times10^{-17}$ at 10,000 s at the remote site and of $5.6\times10^{-14}$ and $6.6\times10^{-17}$ at the integration times of 1 s and 10,000 s at the MARS. The proposed scalable technique can arbitrarily add the same MARSs in the fiber link, which has great potential in realizing ultra-long-haul RF transfer.

  • Fiber radio frequency transfer using bidirectional frequency division multiplexing dissemination

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report on the realization of a novel fiber-optic radio frequency (RF) transfer scheme with the bidirectional frequency division multiplexing (FDM) dissemination technique. Here, the proper bidirectional frequency map used in the forward and backward directions for suppressing the backscattering noise and ensuring the symmetry of the bidirectional transfer RF signals within one telecommunication channel. We experimentally demonstrated a 0.9 GHz signal transfer over a 120 km optical link with the relative frequency stabilities of 2.2E-14 at 1 s and 4.6E-17 at 20,000 s. The implementation of phase noise compensation at the remote site has the capability to perform RF transfer over a branching fiber network with the proposed technique as needed by large-scale scientific experiments.

  • Free-space point-to-multiplepoint optical frequency transfer with lens assisted integrated beam steering

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report on the realization of high-performance silica integrated two-dimensional lens assisted beam-steering (LABS) arrays along with the first-of-their-kind point-to-multiplepoint optical frequency transfer. {The LABS equips with $N$ antennas} and has the capability to produce arbitrary number of output beams with different output angles with the simple control complexity. We demonstrate that the LABS has 16 scanning angles, which can support {the access capability for the maximum of simultaneous 16 user nodes.} The coaxial configuration for transmitting and receiving the light as a monolithic transceiver allows us to reduce the out-of-loop phase noise significantly. Finally, the LABS-based non-blocking point-to-multiplepoint in-door free-space optical frequency transfer links with 24 m and 50 m free-space links are shown. After being compensated for the free-space link up to 50 m, the fractional frequency instability of $4.5\times10^{-17}$ and $7.7\times10^{-20}$ at the averaging time of 1 s and 20,000 s, respectively, can be achieved. The present work proves the potential application of the 2D LABS in free-space optical time-frequency transfer and provides a guidance for developing a chip-scale optical time-frequency transfer system.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心