您选择的条件: Shaohui Zhang
  • Spin-dependent metalens with intensity-adjustable dual-focused vortex beams

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Vortex beams with orbital angular momentum has been attracting tremendous attention due to their considerable applications ranging from optical tweezers to quantum information processing. Metalens, an ultra-compact and multifunctional device, provide a desired platform for designing vortex beams. A spin-dependent metalens can boost the freedom to further satisfy practical applications. By combining geometric phase and propagation phase, we propose and demonstrate an approach to design a spin-dependent metalens generating dual-focused vortex beams along longitudinal or transverse direction, i.e., metalenses with predesigned spin-dependent phase profiles. Under the illumination of an elliptical polarization incident beam, two spin-dependent focused vortex beams can be observed, and the relative focal intensity of them can be easily adjusted by modulating the ellipticity of the incident beam. Moreover, we also demonstrated that the separate distance between these dual-focused beams and their topological charges could be simultaneously tailored at will, which may have a profound impact on optical trapping and manipulation in photonics.

  • Robust Fourier ptychographic microscopy via a physics-based defocusing strategy for calibrating angle-varied LED illumination

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique for wide-field, high-resolution microscopy with a high space-bandwidth product. It integrates the concepts of synthetic aperture and phase retrieval to surpass the resolution limit imposed by the employed objective lens. In the FPM framework, the position of each sub-spectrum needs to be accurately known to ensure the success of the phase retrieval process. Different from the conventional methods with mechanical adjustment or data-driven optimization strategies, here we report a physics-based defocusing strategy for correcting large-scale positional deviation of the LED illumination in FPM. Based on a subpixel image registration process with a defocused object, we can directly infer the illumination parameters including the lateral offsets of the light source, the in-plane rotation angle of the LED array, and the distance between the sample and the LED board. The feasibility and effectiveness of our method are validated with both simulation study and experiments. We show that the reported strategy can obtain high-quality reconstruction of both the complex object and pupil even the LED array is randomly placed under the sample with both unknown lateral offsets and rotations. As such, it enables the development of robust FPM systems by reducing the requirement on fine mechanical adjustment and data-driven correction in the construction process.

  • Pose correction scheme for camera-scanning Fourier ptychography based on camera calibration and homography transform

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychography (FP), as a computational imaging method, is a powerful tool to improve imaging resolution. Camera-scanning Fourier ptychography extends the application of FP from micro to macro creatively. Due to the non-ideal scanning of the camera driven by the mechanical translation stage, the pose error of the camera occurs, greatly degrading the reconstruction quality, while a precise translation stage is expensive and not suitable for wide-range imaging. Here, to improve the imaging performance of camera-scanning Fourier ptychography, we propose a pose correction scheme based on camera calibration and homography transform approaches. The scheme realizes the accurate alignment of data set and location error correction in the frequency domain. Simulation and experimental results demonstrate this method can optimize the reconstruction results and realize high-quality imaging effectively. Combined with the feature recognition algorithm, the scheme provides the possibility for applying FP in remote sensing imaging and space imaging.

  • Robust full-pose-parameter estimation for the LED array in Fourier ptychographic microscopy

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychographic microscopy (FPM) can achieve quantitative phase imaging with a large space-bandwidth product by synthesizing a set of low-resolution intensity images captured under angularly varying illuminations. Determining accurate illumination angles is critical because the consistency between actual systematic parameters and those used in the recovery algorithm is essential for high-quality imaging. This paper presents a full-pose-parameter and physics-based method for calibrating illumination angles. Using a physics-based model constructed with general knowledge of the employed microscope and the brightfield-to-darkfield boundaries inside captured images, we can solve for the full-pose parameters of misplaced LED array, which consist of the distance between the sample and the LED array, two orthogonal lateral shifts, one in-plane rotation angle, and two tilt angles, to correct illumination angles precisely. The feasibility and effectiveness of the proposed method for recovering random or remarkable pose parameters have been demonstrated by both qualitative and quantitative experiments. Due to the completeness of the pose parameters, the clarity of the physical model, and the high robustness for arbitrary misalignments, our method can significantly facilitate the design, implementation, and application of concise and robust FPM platforms.

  • Parallel Fourier Ptychography reconstruction

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychography has attracted a wide range of focus for its ability of large space-bandwidth-produce, and quantative phase measurement. It is a typical computational imaging technique which refers to optimizing both the imaging hardware and reconstruction algorithms simultaneously. The data redundancy and inverse problem algorithms are the sources of FPM's excellent performance. But at the same time, this large amount of data processing and complex algorithms also greatly reduce the imaging speed. In this article, we propose a parallel Fourier ptychography reconstruction framework consisting of three levels of parallel computing parts and implemented it with both central processing unit (CPU) and compute unified device architecture (CUDA) platform. In the conventional FPM reconstruction framework, the sample image is divided into multiple sub-regions for separately processing because the illumination angles for different subregions are varied for the same LED and different subregions contain different defocus distances due to the non-planar distribution or non-ideal posture of biological sample. We first build a parallel computing sub-framework in spatial domain based on the above-mentioned characteristics. And then, by utilizing the sequential characteristics of different spectrum regions to update, a parallel computing sub-framework in the spectrum domain is carried out in our scheme. The feasibility of the proposed parallel FPM reconstruction framework is verified with different experimental results acquired with the system we built.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心