按提交时间
按主题分类
按作者
按机构
您选择的条件: Qingbo Liu
  • Photonics-assisted microwave pulse detection and frequency measurement based on pulse replication and frequency-to-time mapping

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A photonics-assisted microwave pulse detection and frequency measurement scheme is proposed. The unknown microwave pulse is converted to the optical domain and then injected into a fiber loop for pulse replication, which makes it easier to identify the microwave pulse with large pulse repetition interval (PRI), whereas stimulated Brillouin scattering-based frequency-to-time mapping (FTTM) is utilized to measure the carrier frequency of the microwave pulse. A sweep optical carrier is generated and modulated by the unknown microwave pulse and a continuous-wave single-frequency reference, generating two different frequency sweep optical signals, which are combined and used as the probe wave to detect a fixed Brillouin gain spectrum. When the optical signal is detected in a photodetector, FTTM is realized and the frequency of the microwave pulse can be determined. An experiment is performed. For a fiber loop containing a 210-m fiber, pulse replication and FTTM of the pulses with a PRI of 20 {\mu}s and pulse width of 1.20, 1.00, 0.85, and 0.65 {\mu}s are realized. Under a certain sweep frequency chirp rate of 0.978 THz/s, the measurement errors are below {\pm}12 and {\pm}5 MHz by using one pair of pulses and multiple pairs of pulses, respectively. The influence of the sweep frequency chirp rate and pulse width on the measurement error has also been studied. To a certain extent, the faster the frequency sweep, the greater the frequency measurement error. For a specific sweep frequency chirp rate, the measurement error is almost unaffected by the pulse width to be measured.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心