您选择的条件: Chengyin Wu
  • Entangled X-ray Photon Pair Generation by Free Electron Lasers

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Einstein, Podolsky and Rosen's prediction on incompleteness of quantum mechanics was overturned by experimental tests on Bell's inequality that confirmed the existence of quantum entanglement. In X-ray optics, entangled photon pairs can be generated by X-ray parametric down conversion (XPDC), which has certain wavelength window. Meanwhile, free electron laser (FEL) has successfully lased at X-ray frequencies recently. However, FEL is usually seen as a classical light source, and its quantum effects are considered minor corrections to the classical theory. Here we investigate entangled X-ray photon pair emissions in FEL. We establish a theory for coherently amplified entangled photon pair emission from microbunched electron pulses in the undulator. We numerically demonstrate the properties of entangled emission, and provide a scheme to generate highly entangled X-ray photon pairs, which is of great importance in X-ray quantum optics. Our work shows a unique advantage of FELs over synchrotrons in entangled X-ray photon pair generation.

  • Photon retention in coherently excited nitrogen ions

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Quantum coherence in quantum optics is an essential part of optical information processing and light manipulation. Alkali metal vapors, despite the numerous shortcomings, are traditionally used in quantum optics as a working medium due to convenient near-infrared excitation, strong dipole transitions and long-lived coherence. Here, we proposed and experimentally demonstrated photon retention and subsequent re-emittance with the quantum coherence in a system of coherently excited molecular nitrogen ions (N2+) which are produced using a strong 800 nm femtosecond laser pulse. Such photon retention, facilitated by quantum coherence, keeps releasing directly-unmeasurable coherent photons for tens of picoseconds, but is able to be read-out by a time-delayed femtosecond pulse centered at 1580 nm via two-photon resonant absorption, resulting in a strong radiation at 329.3 nm. We reveal a pivotal role of the excited-state population to transmit such extremely weak re-emitted photons in this system. This new finding unveils the nature of the coherent quantum control in N2+ for the potential platform for optical information storage in the remote atmosphere, and facilitates further exploration of fundamental interactions in the quantum optical platform with strong-field ionized molecules.

  • Structured air lasing of N2+

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Structured light has attracted great interest in scientific and technical fields. Here, we demonstrate the first generation of structured air lasing in N2+ driven by 800 nm femtosecond laser pulses. By focusing a vortex pump beam at 800 nm in N2 gas, we generate a vortex superfluorescent radiation of N2+ at 391 nm, which carries the same photon orbital angular momentum as the pump beam. With the injection of a Gaussian seed beam at 391 nm, the coherent radiation is amplified, but the vorticity is unchanged. A new physical mechanism is revealed in the vortex N2+ superfluorescent radiation: the vortex pump beam transfers the spatial spiral phase into the N2+ gain medium, and the Gaussian seed beam picks up the spatial spiral phase and is then amplified into a vortex beam. Moreover, when we employ a pump beam with a cylindrical vector mode, the Gaussian seed beam is correspondingly amplified into a cylindrical vector beam. Surprisingly, the spatial polarization state of the amplified radiation is identical to that of the vector pump beam regardless of whether the Gaussian seed beam is linearly, elliptically, or circularly polarized. Solving three-dimensional coupled wave equations, we show how a Gaussian beam becomes a cylindrical vector beam in a cylindrically symmetric gain medium. This study provides a novel approach to generating structured light via N2+ air lasing.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心