您选择的条件: Jing Wang
  • Optical coherent dot-product chip for sophisticated deep learning regression

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical implementations of neural networks (ONNs) herald the next-generation high-speed and energy-efficient deep learning computing by harnessing the technical advantages of large bandwidth and high parallelism of optics. However, due to the problems of incomplete numerical domain, limited hardware scale, or inadequate numerical accuracy, the majority of existing ONNs were studied for basic classification tasks. Given that regression is a fundamental form of deep learning and accounts for a large part of current artificial intelligence applications, it is necessary to master deep learning regression for further development and deployment of ONNs. Here, we demonstrate a silicon-based optical coherent dot-product chip (OCDC) capable of completing deep learning regression tasks. The OCDC adopts optical fields to carry out operations in complete real-value domain instead of in only positive domain. Via reusing, a single chip conducts matrix multiplications and convolutions in neural networks of any complexity. Also, hardware deviations are compensated via in-situ backpropagation control provided the simplicity of chip architecture. Therefore, the OCDC meets the requirements for sophisticated regression tasks and we successfully demonstrate a representative neural network, the AUTOMAP (a cutting-edge neural network model for image reconstruction). The quality of reconstructed images by the OCDC and a 32-bit digital computer is comparable. To the best of our knowledge, there is no precedent of performing such state-of-the-art regression tasks on ONN chip. It is anticipated that the OCDC can promote novel accomplishment of ONNs in modern AI applications including autonomous driving, natural language processing, and scientific study.

  • Electrically tunable second harmonic generation in atomically thin ReS2

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Electrical tuning of second-order nonlinearity in optical materials is attractive to strengthen and expand the functionalities of nonlinear optical technologies, though its implementation remains elusive. Here, we report the electrically tunable second-order nonlinearity in atomically thin ReS2 flakes benefiting from their distorted 1T crystal structure and interlayer charge transfer. Enabled by the efficient electrostatic control of the few-atomic-layer ReS2, we show that second harmonic generation (SHG) can be induced in odd-number-layered ReS2 flakes which are centrosymmetric and thus without intrinsic SHG. Moreover, the SHG can be precisely modulated by the electric field, reversibly switching from almost zero to an amplitude more than one order of magnitude stronger than that of the monolayer MoS2. For the even-number-layered ReS2 flakes with the intrinsic SHG, the external electric field could be leveraged to enhance the SHG. We further perform the first-principles calculations which suggest that the modification of in-plane second-order hyperpolarizability by the redistributed interlayer-transferring charges in the distorted 1T crystal structure underlies the electrically tunable SHG in ReS2. With its active SHG tunability while using the facile electrostatic control, our work may further expand the nonlinear optoelectronic functions of two-dimensional materials for developing electrically controllable nonlinear optoelectronic devices.

  • Direct ultrafast parametric amplification pumped by a picosecond thin-disk laser

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical quadratic nonlinearity is ultrafast in nature, while parametric interaction usually manifests only the broadband characteristic. Enormous progress has been made toward broadband phase-matching for parametric amplification and wide applications. In existing devices of broadband parametric amplification, the power efficiency of conversion is restricted to approximately the energy efficiency, and the desire for the signal power enhancement necessitates additional pulse compression after amplification. Here, we demonstrate ultrafast parametric amplification having an extraordinary power efficiency of 1155%; this allows the generation of intense femtosecond pulses without the need for a pulse stretcher and compressor. Direct femtosecond signal amplification by picosecond pumping is enabled by an ultrafast parametric environment in which the pre-delayed signal of faster speed gradually overtakes and effectively depletes the pump of slower speed as they propagate in a nonlinear crystal. The demonstrated technique should lead to breakthroughs in ultrafast lasers as well as applications.

  • Plasmon Coupling Induced Photon Scattering Torque

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Bio-compatible Au nanoparticles exhibit great advantages in the application of biomedical researches, such as bio-sensing, medical diagnosis, and cancer therapy. Bio-molecules can even be manipulated by laser tweezers with the optically trapped Au nanoparticles as handles. In this Letter, optical scattering torque arising from the coupled Au nanoparticles driven by circularly polarized light is theoretically presented. The coupled plasmon resonance modes boost the angular momentum transfer from photons to the Au nanoparticle dimers and trimers through light scattering, which does not bring any optical-heating side effect. The generated optical torques on the nanostructures highly depend on the plasmon coupling in the structures. The angular momentum transfer efficiencies from scattered photons to nanostructures can reach around 200\%. The results suggest that coupled plasmonic nanoparticle oligomers are promising candidates to construct optically driven rotary nanomotors that can be applied in biomedical applications.

  • Anapole-Mediated Emission Enhancement in Gallium Nitride Nanocavities

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Benefiting from their low-loss light manipulation at subwavelength scales, optically resonant dielectric nanostructures have emerged as one of the most promising nanophotonic building blocks. Here, we theoretically conceive a dielectric nanocavity made of moderate-refractive-index gallium nitride and investigate the strong electromagnetic field confinement inside the nanocavity. We demonstrate that gallium nitride nanodisks can support anapole states, which result from interference between electric dipole and toroidal dipole modes and are tunable by changing sizes of the nanodisks. The highly confined electromagnetic field of the anapole states can promote the emission efficiency of a single quantum emitter inside the nanocavity. Moreover, the emission polarization can be tuned by placing the quantum emitter off the nanodisk center. Our findings provide a promising candidate for the construction of ultra-compact, super-radiative integrated quantum light sources.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心