您选择的条件: Qun Hao
  • Spin-dependent metalens with intensity-adjustable dual-focused vortex beams

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Vortex beams with orbital angular momentum has been attracting tremendous attention due to their considerable applications ranging from optical tweezers to quantum information processing. Metalens, an ultra-compact and multifunctional device, provide a desired platform for designing vortex beams. A spin-dependent metalens can boost the freedom to further satisfy practical applications. By combining geometric phase and propagation phase, we propose and demonstrate an approach to design a spin-dependent metalens generating dual-focused vortex beams along longitudinal or transverse direction, i.e., metalenses with predesigned spin-dependent phase profiles. Under the illumination of an elliptical polarization incident beam, two spin-dependent focused vortex beams can be observed, and the relative focal intensity of them can be easily adjusted by modulating the ellipticity of the incident beam. Moreover, we also demonstrated that the separate distance between these dual-focused beams and their topological charges could be simultaneously tailored at will, which may have a profound impact on optical trapping and manipulation in photonics.

  • Ultralow loss hollow-core negative curvature fibers with nested elliptical antiresonance tubes

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Hollow-core negative curvature fibers can confine light within air core and have small nonlinearity and dispersion and high damage threshold, thereby attracting a great deal of interest in the field of hollow core fibers. However, reducing the loss of hollow-core negative curvature fibers is a serious problem. On this basis, three new types of fibers with different nested tube structures are proposed in the near-infrared spectral regions and compared in detail with a previously proposed hollow-core negative curvature fiber. We used finite-element method for numerical simulation studies of their transmission loss, bending loss, and single-mode performance, and then the transmission performance of various structural fibers is compared. We found that the nested elliptical antiresonant fiber 1 has better transmission performance than that of the three other types of fibers in the spectral range of 0.72-1.6 {\mu}m. Results show that the transmission loss of the LP01 mode is as low as 6.45*10-6 dB/km at {\lambda} = 1.06 {\mu}m. To the best of our knowledge, the record low level of transmission loss of hollow-core antiresonant fibers with nested tube structures was created. In addition, the nested elliptical antiresonant fiber 1 has better bending resistance, and its bending loss was below 2.99*10-2 dB/km at 5 cm bending radius.

  • Omnidirectional ghost imaging system && unwrapping-free panoramic ghost imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To enlarge FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{\deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.

  • Temporally and Spatially variant-resolution illumination patterns in computational ghost imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Conventional computational ghost imaging (CGI) uses light carrying a sequence of patterns with uniform-resolution to illuminate the object, then performs correlation calculation based on the light intensity value reflected by the target and the preset patterns to obtain object image. It requires a large number of measurements to obtain high-quality images, especially if high-resolution images are to be obtained. To solve this problem, we developed temporally variable-resolution illumination patterns, replacing the conventional uniform-resolution illumination patterns with a sequence of patterns of different imaging resolutions. In addition, we propose to combine temporally variable-resolution illumination patterns and spatially variable-resolution structure to develop temporally and spatially variable-resolution (TSV) illumination patterns, which not only improve the imaging quality of the region of interest (ROI) but also improve the robustness to noise. The methods using proposed illumination patterns are verified by simulations and experiments compared with CGI. For the same number of measurements, the method using temporally variable-resolution illumination patterns has better imaging quality than CGI, but it is less robust to noise. The method using TSV illumination patterns has better imaging quality in ROI than the method using temporally variable-resolution illumination patterns and CGI under the same number of measurements. We also experimentally verify that the method using TSV patterns have better imaging performance when applied to higher resolution imaging. The proposed methods are expected to solve the current computational ghost imaging that is difficult to achieve high-resolution and high-quality imaging.

  • Robust Fourier ptychographic microscopy via a physics-based defocusing strategy for calibrating angle-varied LED illumination

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique for wide-field, high-resolution microscopy with a high space-bandwidth product. It integrates the concepts of synthetic aperture and phase retrieval to surpass the resolution limit imposed by the employed objective lens. In the FPM framework, the position of each sub-spectrum needs to be accurately known to ensure the success of the phase retrieval process. Different from the conventional methods with mechanical adjustment or data-driven optimization strategies, here we report a physics-based defocusing strategy for correcting large-scale positional deviation of the LED illumination in FPM. Based on a subpixel image registration process with a defocused object, we can directly infer the illumination parameters including the lateral offsets of the light source, the in-plane rotation angle of the LED array, and the distance between the sample and the LED board. The feasibility and effectiveness of our method are validated with both simulation study and experiments. We show that the reported strategy can obtain high-quality reconstruction of both the complex object and pupil even the LED array is randomly placed under the sample with both unknown lateral offsets and rotations. As such, it enables the development of robust FPM systems by reducing the requirement on fine mechanical adjustment and data-driven correction in the construction process.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心