您选择的条件: Qiang Wu
  • Single-shot measurement of frequency-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Precise measurement of multi-parameters of ultrafast lasers is vital both in scientific investigations and technical applications, such as, optical field manipulation, pulse shaping, sample characteristics test, and biomedical imaging. Tremendous progress in parameter measurement of ultrafast laser has been made, including single-shot spectra acquired by time-stretch dispersive Fourier transform in spectral domain, and pulse magnification or compression realized by time lens in temporal domain. Nevertheless, single-shot measurement of frequency-resolved states of polarization (SOPs) of ultrafast lasers has not been reported so far, and the unregular SOP evolution dynamics in ultrafast pulses is hardly explored. Here, we demonstrate a new single-shot frequency-resolved SOPs measurement system by utilizing division-of-amplitude method under far-field approximation. Large dispersion is utilized to time-stretch the laser pulses, where the spectrum information is mapped into temporal waveform via dispersive Fourier transform. By calibrating system matrix with different wavelengths, the precise frequency-resolved SOPs are obtained together with high speed opto-electron detection. We demonstrate applications in direct measurement of transient mode-locked fiber laser dynamics. We observe complex frequency-dependent SOPs dynamics in the building up of dissipative solitons, and apparent discrepancy of SOPs between sideband and main peak in conventional solitons. Our observations reveal that the SOP plays a far more complex part in mode-locking process, which is different from the traditional viewpoint. Taking advantage of broadband achromatic optical elements, this method can be extended to measurement of much broad pulse lasers, which will pave the way for reliable measurement and precise control of ultrafast lasers with frequency-resolved SOPs structures.

  • Topological Interface-State Lasing in a Polymer-Cholesteric Liquid Crystal Superlattice

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The advance of topological photonics has heralded a revolution for manipulating light as well as for the development of novel photonic devices such as topological insulator lasers. Here, we demonstrate topological lasing of circular polarization in a polymer-cholesteric liquid crystal (P-CLC) superlattice, tunable in the visible wavelength regime. By use of the femtosecond-laser direct-writing and self-assembling techniques, we establish the P-CLC superlattice with a controlled mini-band structure and a topological interface defect, thereby achieving a low threshold for robust topological lasing at about 0.4 uJ. Thanks to the chiral liquid crystal, not only the emission wavelength is thermally tuned, but the circularly polarized lasing is readily achieved. Our results bring about the possibility to realize compact and integrated topological photonic devices at low cost, as well as to engineer an ideal platform for exploring topological physics that involves light-matter interaction in soft-matter environments.

  • Topologically tuned terahertz confinement in a nonlinear photonic chip

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Compact terahertz (THz) functional devices are greatly sought after for high-speed wireless communication, biochemical sensing, and non-destructive inspection. However, conventional devices to generate and guide THz waves are afflicted with diffraction loss and disorder due to inevitable fabrication defects. Here, based on the topological protection of electromagnetic waves, we demonstrate nonlinear generation and topologically tuned confinement of THz waves in a judiciously-patterned lithium niobate chip forming a wedge-shaped Su-Schrieffer-Heeger lattice. Experimentally measured band structures provide direct visualization of the generated THz waves in momentum space, and their robustness to chiral perturbation is also analyzed and compared between topologically trivial and nontrivial regimes. Such chip-scale control of THz waves may bring about new possibilities for THz integrated topological circuits, promising for advanced photonic applications.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心