您选择的条件: Peng Gao
  • Approaching the Purcell factor limit with whispering-gallery hyperbolic phonon polaritons in hBN nanotubes

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Enhanced light-matter interaction at the nanoscale is pivotal in the foundation of nonlinear optics, quantum optics, and nanophotonics, which are essential for a vast range of applications including single-photon sources, nanolasers, and nanosensors. In this context, the combination of strongly confined polaritons and low-loss nanocavities provides a promising way to enhance light-matter interaction, thus giving rise to a high density of optical states, as quantified by the so-called Purcell factor - the ratio of the decay rate of an optical quantum emitter to its value in free space. Here, we exploit whispering-gallery hyperbolic-phonon-polariton (WG-HPhP) modes in hBN nanotubes (BNNTs) to demonstrate record-high Purcell factors (~10^12) driven by the deep-subwavelength confinement of phonon polaritons and the low intrinsic losses in these atomically smooth nanocavities. Furthermore, the measured Purcell factor increases with decreasing BNNT radius down to 5 nm, a result that extrapolates to ~10^14 in a single-walled BNNT. Our study supports WG-HPhP modes in one-dimensional nanotubes as a powerful platform for investigating ultrastrong light-matter interactions, which open exciting perspectives for applications in single-molecular sensors and nanolasers.

  • Electron microscopy probing electron-photon interactions in SiC nanowires with ultra-wide energy and momentum match

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Nanoscale materials usually can trap light and strongly interact with it leading to many photonic device applications. The light-matter interactions are commonly probed by optical spectroscopy, which, however, have some limitations such as diffraction-limited spatial resolution, tiny momentum transfer and non-continuous excitation/detection. In this work, using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) with ultra-wide energy and momentum match and sub-nanometer spatial resolution, we study the optical microcavity resonant spectroscopy in a single SiC nanowire. The longitudinal Fabry-Perot (FP) resonating modes and the transverse whispering-gallery modes (WGMs) are simultaneously excited and detected, which span from near-infrared (~ 1.2 {\mu}m) to ultraviolet (~ 0.2 {\mu}m) spectral regime and the momentum transfer can be ranging up to 108 cm{^{-1}}. The size effects on the resonant spectra of nanowires are also revealed. Moreover, the nanoscale decay length of resonant EELS is revealed, which is contributed by the strongly localized electron-photon interactions in the SiC nanowire. This work provides a new alternative technique to investigate the optical resonating spectroscopy of a single nanowire structure and to explore the light-matter interactions in dielectric nanostructures, which is also promising for modulating free electrons via photonic structures.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心