您选择的条件: Xuejun Yang
  • Large-scale full-programmable quantum walk and its applications

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: With photonics, the quantum computational advantage has been demonstrated on the task of boson sampling. Next, developing quantum-enhanced approaches for practical problems becomes one of the top priorities for photonic systems. Quantum walks are powerful kernels for developing new and useful quantum algorithms. Here we realize large-scale quantum walks using a fully programmable photonic quantum computing system. The system integrates a silicon quantum photonic chip, enabling the simulation of quantum walk dynamics on graphs with up to 400 vertices and possessing full programmability over quantum walk parameters, including the particle property, initial state, graph structure, and evolution time. In the 400-dimensional Hilbert space, the average fidelity of random entangled quantum states after the whole on-chip circuit evolution reaches as high as 94.29$\pm$1.28$\%$. With the system, we demonstrated exponentially faster hitting and quadratically faster mixing performance of quantum walks over classical random walks, achieving more than two orders of magnitude of enhancement in the experimental hitting efficiency and almost half of the reduction in the experimental evolution time for mixing. We utilize the system to implement a series of quantum applications, including measuring the centrality of scale-free networks, searching targets on Erd\"{o}s-R\'{e}nyi networks, distinguishing non-isomorphic graph pairs, and simulating the topological phase of higher-order topological insulators. Our work shows one feasible path for quantum photonics to address applications of practical interests in the near future.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心